Cellular responses to stimuli underpin discoveries in drug development, synthetic biology, and general life sciences. We introduce a library comprising 6144 synthetic promoters, each shorter than 250 bp, designed as transcriptional readouts of cellular stimulus responses in massively parallel reporter assay format. This library facilitates precise detection and amplification of transcriptional activity from our promoters, enabling the systematic development of tunable reporters with dynamic ranges of 50-100 fold.
View Article and Find Full Text PDFUnderstanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) have successfully identified 145 genomic regions that contribute to schizophrenia risk, but linkage disequilibrium makes it challenging to discern causal variants. We performed a massively parallel reporter assay (MPRA) on 5,173 fine-mapped schizophrenia GWAS variants in primary human neural progenitors and identified 439 variants with allelic regulatory effects (MPRA-positive variants). Transcription factor binding had modest predictive power, while fine-map posterior probability, enhancer overlap, and evolutionary conservation failed to predict MPRA-positive variants.
View Article and Find Full Text PDFCellular transcription enables cells to adapt to various stimuli and maintain homeostasis. Transcription factors bind to transcription response elements (TREs) in gene promoters, initiating transcription. Synthetic promoters, derived from natural TREs, can be engineered to control exogenous gene expression using endogenous transcription machinery.
View Article and Find Full Text PDFPredicting the function of noncoding variation is a major challenge in modern genetics. In this study, we used massively parallel reporter assays to screen 5706 variants identified from genome-wide association studies for both Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), identifying 320 functional regulatory variants (frVars) across 27 loci, including the complex 17q21.31 region.
View Article and Find Full Text PDFBackground: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce.
View Article and Find Full Text PDFFrequent and widespread testing of members of the population who are asymptomatic for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the mitigation of the transmission of the virus. Despite the recent increases in testing capacity, tests based on quantitative polymerase chain reaction (qPCR) assays cannot be easily deployed at the scale required for population-wide screening. Here, we show that next-generation sequencing of pooled samples tagged with sample-specific molecular barcodes enables the testing of thousands of nasal or saliva samples for SARS-CoV-2 RNA in a single run without the need for RNA extraction.
View Article and Find Full Text PDFSequence variation in regulatory DNA alters gene expression and shapes genetically complex traits. However, the identification of individual, causal regulatory variants is challenging. Here, we used a massively parallel reporter assay to measure the -regulatory consequences of 5832 natural DNA variants in the promoters of 2503 genes in the yeast .
View Article and Find Full Text PDFThe >800 human G protein-coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state- and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here, we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G protein signal transduction.
View Article and Find Full Text PDFThe rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to the high rates of transmission by individuals who are asymptomatic at the time of transmission. Frequent, widespread testing of the asymptomatic population for SARS-CoV-2 is essential to suppress viral transmission. Despite increases in testing capacity, multiple challenges remain in deploying traditional reverse transcription and quantitative PCR (RT-qPCR) tests at the scale required for population screening of asymptomatic individuals.
View Article and Find Full Text PDFNucleic Acids Res
September 2020
Multiplexed assays allow functional testing of large synthetic libraries of genetic elements, but are limited by the designability, length, fidelity and scale of the input DNA. Here, we improve DropSynth, a low-cost, multiplexed method that builds gene libraries by compartmentalizing and assembling microarray-derived oligonucleotides in vortexed emulsions. By optimizing enzyme choice, adding enzymatic error correction and increasing scale, we show that DropSynth can build thousands of gene-length fragments at >20% fidelity.
View Article and Find Full Text PDFIn eukaryotes, transcription factors (TFs) orchestrate gene expression by binding to TF-binding sites (TFBSs) and localizing transcriptional co-regulators and RNA polymerase II to cis-regulatory elements. However, we lack a basic understanding of the relationship between TFBS composition and their quantitative transcriptional responses. Here, we measured expression driven by 17,406 synthetic cis-regulatory elements with varied compositions of a model TFBS, the c-AMP response element (CRE) by using massively parallel reporter assays (MPRAs).
View Article and Find Full Text PDFBackground: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2).
View Article and Find Full Text PDFMutations that lead to splicing defects can have severe consequences on gene function and cause disease. Here, we explore how human genetic variation affects exon recognition by developing a multiplexed functional assay of splicing using Sort-seq (MFASS). We assayed 27,733 variants in the Exome Aggregation Consortium (ExAC) within or adjacent to 2,198 human exons in the MFASS minigene reporter and found that 3.
View Article and Find Full Text PDFRobust and predictably performing synthetic circuits rely on the use of well-characterized regulatory parts across different genetic backgrounds and environmental contexts. Here we report the large-scale metagenomic mining of thousands of natural 5' regulatory sequences from diverse bacteria, and their multiplexed gene expression characterization in industrially relevant microbes. We identified sequences with broad and host-specific expression properties that are robust in various growth conditions.
View Article and Find Full Text PDFUnderstanding the functional effects of DNA sequence variants is of critical importance for studies of basic biology, evolution, and medical genetics; however, measuring these effects in a high-throughput manner is a major challenge. One promising avenue is precise editing with the CRISPR-Cas9 system, which allows for generation of DNA double-strand breaks (DSBs) at genomic sites matching the targeting sequence of a guide RNA (gRNA). Recent studies have used CRISPR libraries to generate many frameshift mutations genome wide through faulty repair of CRISPR-directed breaks by nonhomologous end joining (NHEJ) .
View Article and Find Full Text PDFPromoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In Escherichia coli, decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone.
View Article and Find Full Text PDFImproving our ability to construct and functionally characterize DNA sequences would broadly accelerate progress in biology. Here, we introduce DropSynth, a scalable, low-cost method to build thousands of defined gene-length constructs in a pooled (multiplexed) manner. DropSynth uses a library of barcoded beads that pull down the oligonucleotides necessary for a gene's assembly, which are then processed and assembled in water-in-oil emulsions.
View Article and Find Full Text PDFNucleic Acids Res
September 2017
Gene synthesis, the process of assembling gene-length fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis.
View Article and Find Full Text PDFGenetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery.
View Article and Find Full Text PDFMultiplex Automated Genome Engineering (MAGE) allows simultaneous mutagenesis of multiple target sites in bacterial genomes using short oligonucleotides. However, large-scale mutagenesis requires hundreds to thousands of unique oligos, which are costly to synthesize and impossible to scale-up by traditional phosphoramidite column-based approaches. Here, we describe a novel method to amplify oligos from microarray chips for direct use in MAGE to perturb thousands of genomic sites simultaneously.
View Article and Find Full Text PDFFor over 60 years, the synthetic production of new DNA sequences has helped researchers understand and engineer biology. Here we summarize methods and caveats for the de novo synthesis of DNA, with particular emphasis on recent technologies that allow for large-scale and low-cost production. In addition, we discuss emerging applications enabled by large-scale de novo DNA constructs, as well as the challenges and opportunities that lie ahead.
View Article and Find Full Text PDF