Regeneration of oral soft tissue defects, including mucogingival defects associated with the recession or loss of gingival and/or mucosal tissues around teeth and implants, is crucial for restoring oral tissue form, function, and health. This study presents a novel approach using three-dimensional (3D) bioprinting to fabricate individualized grafts with precise size, shape, and layer-by-layer cellular organization. A multicomponent polysaccharide/fibrinogen-based bioink is developed, and bioprinting parameters are optimized to create shape-controlled oral soft tissue (gingival) constructs.
View Article and Find Full Text PDFObjective: Guided tissue/guided bone regeneration (GTR/GBR) membranes are widely used for periodontal bone regeneration, but their success depends on a bacteria-free environment. Systemic antibiotic treatment often proves inadequate, moreover, the increasing prevalence of antibiotic resistance in oral infections exacerbates this challenge. This study aimed to fabricate antibacterial membranes using a new class of antibiotics for local drug delivery, to eradicate infections and promote tissue regeneration.
View Article and Find Full Text PDFBackground: Assessing the biocompatibility of materials is crucial for ensuring the safety and well-being of patients by preventing undesirable, toxic, immune, or allergic reactions, and ensuring that materials remain functional over time without triggering adverse reactions. To ensure a comprehensive assessment, planning tests that carefully consider the intended application and potential exposure scenarios for selecting relevant assays, cell types, and testing parameters is essential. Moreover, characterizing the composition and properties of biomaterials allows for a more accurate understanding of test outcomes and the identification of factors contributing to cytotoxicity.
View Article and Find Full Text PDFObjective: Acyclovir (ACY) is used to treat oral viral herpes but has low solubility and bioavailability. Stearic acid (SA) is lipophilic and can be combined with drugs. Therefore, this study aimed to characterize the properties of SA nanoparticles in increasing the cellular uptake of ACY by oral epithelial cells.
View Article and Find Full Text PDFBackground/purpose: Smoking is a major contributor to global oral cancer cases, necessitating urgent intervention. FOXD1, involved in developmental processes and various cancers, shows promise as a prognostic marker in oral squamous cell carcinoma (OSCC). This study investigates the impact of waterpipe smoke condensate (WPSC) on OSCC, focusing on FOXD1 role in inducing epithelial-mesenchymal transition (EMT) and metastasis.
View Article and Find Full Text PDFGingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors.
View Article and Find Full Text PDFDeveloping physiologically relevant models for studying periodontitis is crucial for understanding its pathogenesis and developing effective therapeutic strategies. In this study, we aimed to integrate the spheroid culture of periodontal ligament stem cells (PDLSCs) within a spheroid-on-chip microfluidic perfusion platform and to investigate the influence of interstitial fluid flow on morphogenesis, cellular viability, and osteogenic differentiation of PDLSC spheroids. PDLSC spheroids were seeded onto the spheroid-on-chip microfluidic device and cultured under static and flow conditions.
View Article and Find Full Text PDFGingiva plays a crucial barrier role at the interface of teeth, tooth-supporting structures, microbiome, and external agents. To mimic this complex microenvironment, an in vitro microphysiological platform and biofabricated full-thickness gingival equivalents (gingiva-on-chip) within a vertically stacked microfluidic device is developed. This design allowed long-term and air-liquid interface culture, and host-material interactions under flow conditions.
View Article and Find Full Text PDFTo evaluate the prognostic accuracy of microbial biomarkers and their associations with the response to active periodontal treatment (APT) and supportive periodontal therapy (SPT). Microbial dysbiosis plays a crucial role in the disease processes of periodontitis. Biomarkers based on microbial composition may offer additional prognostic value, supplementing the limitations of current clinical parameters.
View Article and Find Full Text PDFObjectives: There is a lack of studies evaluating the accuracy of the 2009 American Association of Endodontists (AAE) diagnostic criteria for diagnosing pulpal health in primary teeth. This study aimed to estimate and correlate the diagnostic accuracy of clinical diagnosis of reversible and irreversible pulpitis using the 2009 AAE criteria with histological findings in primary teeth.
Methods: Eighty primary teeth that were clinically diagnosed with normal pulp (n = 10), reversible pulpitis (n = 30), irreversible pulpitis (n = 30) and pulp necrosis (n = 10) were collected.
Gingival connective tissue and its vasculature play a crucial role in the host's immune response against the periodontal microbiome and serve as a bridge between the oral and systemic environments. However, there is a lack of representative models that mimic the complex features of vascularized gingival connective tissue and its interaction with the periodontal microbiome, hindering our understanding of periodontal health and disease. Towards this pursuit, we present the characterization of vascularized gingival connective tissue equivalents (CTEs) as a model to study the interactions between oral biofilm colonizers and gingival tissues in healthy and diseased states.
View Article and Find Full Text PDFWound healing is a dynamic process that involves a series of molecular and cellular events aimed at replacing devitalized and missing cellular components and/or tissue layers. Recently, extracellular vesicles (EVs), naturally cell-secreted lipid membrane-bound vesicles laden with biological cargos including proteins, lipids, and nucleic acids, have drawn wide attention due to their ability to promote wound healing and tissue regeneration. However, current exploitation of EVs as therapeutic agents is limited by their low isolation yields and tedious isolation processes.
View Article and Find Full Text PDFGingival crevice and gingival crevicular fluid (GCF) flow play a crucial role at the gingiva-oral microbiome interface which contributes toward maintaining the balance between gingival health and periodontal disease. Interstitial flow of GCF strongly impacts the host-microbiome interactions and tissue responses. However, currently available in vitro preclinical models largely disregard the dynamic nature of gingival crevicular microenvironment, thus limiting the progress in the development of periodontal therapeutics.
View Article and Find Full Text PDFGingival and periodontal ligament fibroblasts are functionally distinct cell types within the dento-gingival unit that participate in host immune response. Their microenvironment influences the behavior and immune response to microbial challenge. We developed three-dimensional gingival and periodontal connective tissue equivalents (CTEs) using human fibrin-based matrix.
View Article and Find Full Text PDFObjective: This study aims to characterize the cytotoxicity potential of silver diamine fluoride (SDF) on dental pulp stem cells (DPSC) and gingival equivalents.
Methods: DPSC cultured on 96-well plates was exposed directly to SDF (0.0001-0.
With advances in knowledge and treatment options, pulp regeneration is now a clear objective in clinical dental practice. For this purpose, many methodologies have been developed in attempts to address the putative questions raised both in research and in clinical practice. In the first part of this review, laboratory-based methods will be presented, analysing the advantages, disadvantages, and benefits of cell culture methodologies and ectopic/semiorthotopic animal studies.
View Article and Find Full Text PDFThe role of angiogenesis in health and disease have gained considerable momentum in recent years. Visualizing angiogenic patterns and associated events of surrounding vascular beds in response to therapeutic and laboratory-grade biomolecules has become a commonplace in regenerative medicine and the biosciences. To achieve high-quality imaging for elucidating the molecular mechanisms of angiogenesis, the two-photon excitation fluorescence (2PEF) microscopy, or multiphoton fluorescence microscopy is increasingly utilized in scientific investigations.
View Article and Find Full Text PDFBioprinting three-dimensional (3D) tissue equivalents have progressed tremendously over the last decade. 3D bioprinting is currently being employed to develop larger and more physiologic tissues, and it is of particular interest to generate vasculature in biofabricated tissues to aid better perfusion and transport of nutrition. Having an advantage over manual culture systems by bringing together biological scaffold materials and cells in precise 3D spatial orientation, bioprinting could assist in placing endothelial cells in specific spatial locations within a 3D matrix to promote vessel formation at these predefined areas.
View Article and Find Full Text PDFIn the adult tissues, blood vessels traverse the body with neurons side by side; and share common signaling molecules. Developmental studies on animal models have shown that peripheral sensory neurons (PSNs) secrete angiogenic factors and endothelial cells (ECs) secrete neurotrophic factors which contribute to their coexistence, thereby forming the peripheral neurovascular (PNV) unit. Despite the large number of studies showing that innervation and vascularization complement each other, the interaction between human PSNs and ECs is still largely unknown.
View Article and Find Full Text PDFBackground And Objectives: Ageing is associated with an impaired cellular function that can affect tissue architecture and wound healing in gingival and periodontal tissues. However, the impact of oral fibroblast ageing on the structural organization of the extracellular matrix (ECM) proteins is poorly understood. Hence, in this study, we investigated the impact of cellular ageing of oral fibroblasts on the production and structural organization of collagen and other ECM proteins.
View Article and Find Full Text PDFThree-dimensional (3D) biofabrication techniques that enable the production of multicellular tissue equivalents for applications in basic biology, drug screening and regenerative medicne. Fabrication of these tissue constructs with in-built microvasculature enables recapitulation of the biological environment of the native tissues. Here, we present the fabrication of 3D vascularized tissue constructs containing microvascular networks using human embryonic stem cell (hESC)-derived endothelial cells (ECs) and pericytes encapsulated within a fibrin-based matrix and cultured under chemically defined conditions.
View Article and Find Full Text PDFConductivity is a desirable property of an ideal nerve guide conduit (NGC) that is being considered for peripheral nerve regeneration. Most of the conductive polymers reported in use for fabrication of tissue engineering scaffolds such as polypyrrole (PPy), polyaniline, polythiophene, and poly(3,4-ethylenedioxythiophene) are non-biodegradable and possess weak mechanical properties to be fabricated into 3D structures. In this study, a biodegradable and conductive block copolymer of PPy and Polycaprolactone (PPy-b-PCL) was used to fabricate 3D porous NGCs using a novel electrohydrodynamic jet 3D printing process which offers superior control over fiber diameter, pore size, porosity, and fiber alignment.
View Article and Find Full Text PDFThe prevalence of peripheral nerve injuries resulting in loss of motor function, sensory function, or both, is on the rise. Artificial Nerve Guide Conduits (NGCs) are considered an effective alternative treatment for autologous nerve grafts, which is the current gold-standard for treating peripheral nerve injuries. In this study, Polycaprolactone-based three-dimensional porous NGCs are fabricated using Electrohydrodynamic jet 3D printing (EHD-jetting) for the first time.
View Article and Find Full Text PDFMultiphoton microscopy has emerged as a powerful modality for noninvasive, spatial, and temporal imaging of biological tissues without the use of labels and/or dyes. It provides complimentary imaging modalities, which include two-photon excited fluorescence (2PEF) and second harmonic generation (SHG). 2PEF from endogenous chromophores such as nicotinamide adenine dinucleotides (NADH), flavins and keratin enable visualization of cellular and subcellular structures.
View Article and Find Full Text PDFAtopic dermatitis is a chronic inflammatory skin disease caused by complex multifactorial etiology. In the recent years, there have been significant advances in tissue engineering and the generation of in vitro skin models representative of healthy and diseased states. This chapter describes the methodology for the fabrication of in vitro human skin equivalent (HSE) from human keratinocytes and fibroblasts using a fibrin-based dermal matrix and serum-free culture conditions.
View Article and Find Full Text PDF