The synthesis of supramolecular polymers with controlled architecture is a grand challenge in supramolecular chemistry. Although living supramolecular polymerization via primary nucleation has been extensively studied for controlling the supramolecular polymerization of small molecules, the resulting supramolecular polymers have typically exhibited one-dimensional morphology. In this report, we present the synthesis of intriguing supramolecular polymer architectures through a secondary nucleation event, a mechanism well-established in protein aggregation and the crystallization of small molecules.
View Article and Find Full Text PDFUnderstanding solvent-solute interactions is essential to designing and synthesising soft materials with tailor-made functions. Although the interaction of the solute with the solvent mixture is more complex than the single solvent medium, solvent mixtures are exciting to unfold several unforeseen phenomena in supramolecular chemistry. Here, we report two unforeseen pathways observed during the hierarchical assembly of cationic perylene diimides (cPDIs) in water and amphiphilic organic solvent (AOS) mixtures.
View Article and Find Full Text PDFCooperative supramolecular polymerization is important for the synthesis of functional supramolecular homo and block-copolymers of π-systems. Current strategies indicate the need of strong hydrogen bonding (H-bonding) and/or dipolar interactions in the π-systems to achieve cooperativity. In sharp contrast, here we report the cooperative supramolecular polymerization in alkyl chain substituted perylene diimides (alkyl PDIs) driven by dispersive interactions with molecular level understanding.
View Article and Find Full Text PDFPure spin current based devices have attracted great interest in recent days. Spin current injection into non-magnetic materials is essential for the design and development of such pure spin current based devices. In this context, organic semiconductors (OSCs) can be potential non-magnetic materials over widely explored heavy metals.
View Article and Find Full Text PDFBenzoperylene benzimidazoles (BPBIs) based π-systems were synthesized and their self-assembly in both non-polar and polar solvents investigated. Due to the presence of donor and acceptor functional groups, BPBIs absorb light up to 600 nm and display red fluorescence (575-800 nm). Depending on the solvent and side chain, BPBIs self-assemble into various nanostructures such as nanoribbons, nanorods, nanofibers and nanoparticles.
View Article and Find Full Text PDFSolvents are fundamentally essential for the synthesis and processing of soft materials. Supramolecular polymers (SPs), an emerging class of soft materials, are usually stable in single and mixtures of poor solvents. In contrast to these preconceived notions, here we report the depolymerization of SPs in the mixture of two poor solvents.
View Article and Find Full Text PDF