Publications by authors named "Srinivasrao Shivashankar"

Magnetic nanomotors with integrated theranostic capabilities can revolutionize biomedicine of the future. Typically, these nanomotors contain ferromagnetic materials, such that small magnetic fields can be used to maneuver and localize them in fluidic or gel-like environments. Motors with large permanent magnetic moments tend to agglomerate, which limits the scalability of this otherwise promising technology.

View Article and Find Full Text PDF

Controlled motion of artificial nanomotors in biological environments, such as blood, can lead to fascinating biomedical applications, ranging from targeted drug delivery to microsurgery and many more. In spite of the various strategies used in fabricating and actuating nanomotors, practical issues related to fuel requirement, corrosion, and liquid viscosity have limited the motion of nanomotors to model systems such as water, serum, or biofluids diluted with toxic chemical fuels, such as hydrogen peroxide. As we demonstrate here, integrating conformal ferrite coatings with magnetic nanohelices offer a promising combination of functionalities for having controlled motion in practical biological fluids, such as chemical stability, cytocompatibility, and the generated thrust.

View Article and Find Full Text PDF

We present a photoanode for dye-sensitized solar cell (DSC) based on ZnO nanoshell deposited by atomic layer deposition at 150 °C on a mesoporous insulating template. An ultrathin layer of ZnO between 3 and 6 nm, which exhibits quantum confinement effect, is found to be sufficient to transport the photogenerated electrons to the external contacts and exhibits near-unity collection efficiency. A 6 nm ZnO nanoshell on a 2.

View Article and Find Full Text PDF