The adoption of diabetes technology for the management of type 1 and insulin-treated type 2 diabetes has greatly increased. The annual volume of discarded continuous glucose monitoring (CGM) devices, considering only Dexcom and Freestyle Libre brands, totals more than 153 million units and Omnipod contributes an additional estimated 43.8 million units.
View Article and Find Full Text PDFSolid-state zinc ion batteries (ZIBs) and aluminum-ion batteries (AIBs) are deemed as promising candidates for supplying power in wearable devices due to merits of low cost, high safety, and tunable flexibility. However, their wide-scale practical application is limited by various challenges, down to the material level. This Review begins with elaboration of the root causes and their detrimental effect for four main limitations: electrode-electrolyte interface contact, electrolyte ionic conductivity, mechanical strength, and electrochemical stability window of the electrolyte.
View Article and Find Full Text PDFRechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent.
View Article and Find Full Text PDFNovel electrolyte is being pursued toward exploring Zn chemistry in zinc ion batteries. Here, a fluorine-free liquid crystal (LC) ionomer-type zinc electrolyte is presented, achieving simultaneous regulated water activity and long-range ordering of conduction channels and SEI. Distinct from water network or local ordering in current advances, long-range ordering of layered water channels is realized.
View Article and Find Full Text PDFThe structural battery is a multifunctional energy storage device that aims to address the weight and volume efficiency issues that conventional batteries face, especially in electric transportation. By combining the functions of mechanical load bearing and energy storage, structural batteries can reduce the reliance on, or even eventually replace the main power source in an electric vehicle or a drone. However, one of the key challenges to be addressed before achieving multifunctionality in structural batteries would be the design of a suitable multifunctional structural battery electrolyte.
View Article and Find Full Text PDFThe massive adoption of renewable energy especially photovoltaic (PVs) panels is expected to create a huge waste stream once they reach end-of-life (EoL). Despite having the highest embodied energy, present photovoltaic recycling neglects the high purity silicon found in the PV cell. Herein, a scalable and low energy process is developed to recover pristine silicon from EoL solar panel through a method which avoids energy-intensive high temperature processes.
View Article and Find Full Text PDFEfficient bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are required for metal air batteries, to replace costly metals, such as Pt and Ir/Ru based compounds, which are typically used as benchmarks for ORR and OER, respectively. Isolated single atomic sites coordinated with nitrogen on carbon supports (M-N-C) have promising performance for replacement of precious metal catalysts. However, most of monometallic M-N-C catalysts demonstrate unsatisfactory bifunctional performance.
View Article and Find Full Text PDFReuse of electronic wastes is a critical aspect for a more sustainable circular economy as it provides the simplest and most direct route to extend the lifespan of non-renewable resources. Herein, the distinctive surface and micro topographical features of computer electronic-plastic (E-plastic) scraps were unconventionally repurposed as a substrate material to guide the growth and differentiation of human adipose-derived mesenchymal stem cells (ADSCs). Specifically, the E-plastics were scavenged from discarded computer components such as light diffuser plate (polyacrylates), prismatic sheet (polyethylene terephthalate), and keyboards (acrylonitrile butadiene styrene) were cleaned, sterilized, and systematically characterized to determine the identity of the plastics, chemical constituents, surface features, and leaching characteristics.
View Article and Find Full Text PDFE-waste generated from end-of-life spent lithium-ion batteries (LIBs) is increasing at a rapid rate owing to the increasing consumption of these batteries in portable electronics, electric vehicles, and renewable energy storage worldwide. On the one hand, landfilling and incinerating LIBs e-waste poses environmental and safety concerns owing to their constituent materials. On the other hand, scarcity of metal resources used in manufacturing LIBs and potential value creation through the recovery of these metal resources from spent LIBs has triggered increased interest in recycling spent LIBs from e-waste.
View Article and Find Full Text PDFLithium-ion batteries (LIBs) are vital energy-storage devices in modern society. However, the performance and cost are still not satisfactory in terms of energy density, power density, cycle life, safety, etc. To further improve the performance of batteries, traditional "trial-and-error" processes require a vast number of tedious experiments.
View Article and Find Full Text PDFThis review discusses the latest trend in recovering valuable metals from spent lithium-ion batteries (LIBs) to meet the technological world's critical metal demands. Spent LIBs are a secondary source of valuable metals such as Li (5%-7%), Ni (5%-10%), Co (5%-25%), Mn (5-11%), and non-metal graphite. Recycling is essential for the battery industry to extract valuable critical metals from secondary sources to develop new and novel high-tech LIBs for various applications such as eco-friendly technologies, renewable energy, emission-free electric vehicles, and energy-saving lightings.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2021
The reversibility of metal anode is a fundamental challenge to the lifetime of rechargeable batteries. Though being widely employed in aqueous energy storage systems, metallic zinc suffers from dendrite formation that severely hinders its applications. Here we report texturing Zn as an effective way to address the issue of zinc dendrite.
View Article and Find Full Text PDFChemosphere
March 2021
Herein, Taguchi L orthogonal array was used for the first time to optimize synthesis of diameter-controlled multi walled carbon nanotubes (MWCNTs). The nanoadsorbents, MWCNTs and MWCNTs were applied for Pb(II) and Ni(II) ion removal from paint, battery and electroplating wastewater. The results indicated successful synthesis of MWCNTs with diameter distribution ranges of 5-15 nm and 16-25 nm.
View Article and Find Full Text PDFWe report the excellent charge storage performance of high-energy Li-ion capacitors (LIC) fabricated from the mesoporous CoO nanosheets as the conversion-type battery component and Jack fruit () derived activated carbon as a supercapacitor electrode, especially at high temperatures (50 and 40 °C). Prior to the fabrication, the electrochemical prelithiation strategy was applied to CoO to alleviate the irreversibility and enrich the Li-ions for electrochemical reactions (Co + LiO). The LIC delivered a maximum energy density of ∼118 Wh kg at a high temperature of 50 °C.
View Article and Find Full Text PDFThis report describes a simple one-pot soft-templating and ammonolysis-free approach to synthesize mesoporous crystalline titanium oxynitride by combining block copolymer-directed self-assembly with metal sol and urea precursors. The Pluronic F127 triblock copolymer was employed to structure-direct titanium-oxo-acetate sol nanoparticles and urea-formaldehyde into ordered hybrid mesostructured monoliths. The hybrid composites were directly converted into mesoporous crystalline titanium oxynitride and retained macroscale monolithic integrity up to 800 °C under nitrogen.
View Article and Find Full Text PDFAqueous Al-ion batteries (AAIBs) are the subject of great interest due to the inherent safety and high theoretical capacity of aluminum. The high abundancy and easy accessibility of aluminum raw materials further make AAIBs appealing for grid-scale energy storage. However, the passivating oxide film formation and hydrogen side reactions at the aluminum anode as well as limited availability of the cathode lead to low discharge voltage and poor cycling stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
Aqueous rechargeable zinc-ion batteries are emerging as attractive alternatives for post-lithium-ion batteries. However, their electrochemical performances are restricted by the narrow working window of materials in aqueous electrolytes. Herein, a Ni-mediated VO-B nanobelt [(Ni)VO] has been designed to optimize the intrinsic electronic structure of VO-B and thus achieve much more enhanced zinc-ion storage.
View Article and Find Full Text PDFThe development of environmentally benign hydrometallurgical processes to treat spent lithium-ion batteries (LIBs) is a critical aspect of the electronic-waste circular economy. Herein, as an alternative to the highly explosive HO, discarded orange peel powder (OP) is valorized as a green reductant for the leaching of industrially produced LIBs scraps in citric acid (HCit) lixiviant. The reductive potential of the cellulose- and antioxidant-rich OP was validated using the 3,5-dinitrosalicylic acid and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid assays.
View Article and Find Full Text PDFWe demonstrate the concept of fabricating new lithium ion batteries from recycled spent 18650 lithium ion batteries (LIB). LiFePO cathode was extracted from these spent LIB using combined approach of pre-treatment, mechanical treatment and hydrometallurgical process wherein weak organic acids, such as methyl sulfonic acid (MSA) and p-toluene sulfonic acid (TSA), were employed for the first time for leaching at room temperature of metal ions instead of conventional strong acids. High leaching efficiencies (95%) were obtained for extraction of Li and Fe using these acids from black mass.
View Article and Find Full Text PDFAlthough "water-in-salt" electrolytes have opened a new pathway to expand the electrochemical stability window of aqueous electrolytes, the electrode instability and irreversible proton co-insertion caused by aqueous media still hinder the practical application, even when using exotic fluorinated salts. In this study, an accessible hybrid electrolyte class based on common sodium salts is proposed, and crucially an ethanol-rich media is introduced to achieve highly stable Na-ion electrochemistry. Here, ethanol exerts a strong hydrogen-bonding effect on water, simultaneously expanding the electrochemical stability window of the hybridized electrolyte to 2.
View Article and Find Full Text PDFThis paper reports a simple method to recycle plastic-bottle and Li-ion-battery waste in one process by forming valuable coordination polymers (metal-organic frameworks, MOFs). Poly(ethylene terephthalate) from plastic bottles was depolymerized to produce an organic ligand source (terephthalate), and Li-ion batteries were dissolved as a source of metals. By mixing both dissolution solutions together, selective precipitation of an Al-based MOF, known as MIL-53 in the literature, was observed.
View Article and Find Full Text PDFA concept is proposed for the recycling of Li-ion batteries with an open-loop method that allows to reduce the volume of wastes and simultaneously to produce valuable materials in large amounts (Metal-Organic Frameworks, MOFs). After dissolution of Nickel, Manganese, Cobalt (NMC) batteries in acidic solution (HCl, HNO or HSO/HO), addition of organic moieties and a heat treatment, different MOFs are obtained. Solutions after precipitation are analyzed by inductively coupled plasma and materials are characterized by powder X-Ray diffraction, N adsorption, thermogravimetric analysis and Scanning electron microscope.
View Article and Find Full Text PDFElectrocatalysts are one of the most important parts for oxygen evolution reaction (OER) to overcome the sluggish kinetics. Herein, amorphous Fe-Ni-P-B-O (FNPBO) nanocages as efficient OER catalysts are synthesized by a simple low-cost and scalable method at room temperature. The samples are chemically stable, in clear contrast to reported unstable or even pyrophoric boride samples.
View Article and Find Full Text PDFGenerally, a cost-effective electrocatalytic process that offers an efficient electrochemical energy conversion and storage necessitates a rational design and selection of structure as well as composition of active catalytic centers. Herein, we achieved an unprecedented surface morphology and shape tuning to obtain hollow NiCoP with a continuum of active sharp edges (spiked) on a hollow spherical surface by means of facile hydrothermal treatments. The highly exposed, branched spike-covered hollow structure of NiCoP shows remarkable performance enhancement for hydrogen evolution reaction and oxygen evolution reaction in a wide range of Ph solutions.
View Article and Find Full Text PDFMetallic zinc is an ideal anode material for rechargeable zinc-ion batteries (ZIBs), taking us beyond the lithium-ion era. In-depth understanding of the Zn metal surface is currently required owing to diverse but uncorrelated data about the Zn surface in mild environments. Herein, the surface chemistry of Zn is elucidated and the formation and growth of a zinc layer hydroxide is verified as an effective solid-electrolyte interface (SEI) during stripping/plating in mild electrolyte.
View Article and Find Full Text PDF