Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously.
View Article and Find Full Text PDFScaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously.
View Article and Find Full Text PDFNeurons in the cerebral cortex fire coincident action potentials during ongoing activity and in response to sensory inputs. These synchronized cell assemblies are fundamental to cortex function, yet basic dynamical aspects of their size and duration are largely unknown. Using 2-photon imaging of neurons in the superficial cortex of awake mice, we show that synchronized cell assemblies organize as scale-invariant avalanches that quadratically grow with duration.
View Article and Find Full Text PDFBuildings are responsible for a significant fraction of the overall electrical load. Given the increasing penetration of renewables into the generation mix, it is important to make building loads flexible, to better match the variability in generation. Of course, building loads can be made arbitrarily flexible using sufficient stationary storage, but this comes at considerable cost.
View Article and Find Full Text PDFForecasting the dynamics of large, complex, sparse networks from previous time series data is important in a wide range of contexts. Here we present a machine learning scheme for this task using a parallel architecture that mimics the topology of the network of interest. We demonstrate the utility and scalability of our method implemented using reservoir computing on a chaotic network of oscillators.
View Article and Find Full Text PDF