Publications by authors named "Srinivasan Dinesh Kumar"

Unlabelled: Traumatic brain injury (TBI) causes multiple cerebrovascular disruptions and oxidative stress. These pathological mechanisms are often accompanied by serious impairment of cerebral blood flow autoregulation and neuronal and glial degeneration.

Background/objectives: Multiple biochemical cascades are triggered by brain damage, resulting in reactive oxygen species production alongside blood loss and hypoxia.

View Article and Find Full Text PDF

Atherosclerosis continues to be a leading cause of morbidity and mortality globally. The precise evaluation of the extent of an atherosclerotic plaque is essential for forecasting its likelihood of causing health concerns and tracking treatment outcomes. When compared to conventional methods used, nanoparticles offer clear benefits and excellent development opportunities for the detection and characterisation of susceptible atherosclerotic plaques.

View Article and Find Full Text PDF

Maternal diabetes has been associated with a greater risk of neurodevelopmental disorders in offspring. It has been established that hyperglycemia alters the expression of genes and microRNAs (miRNAs) regulating the fate of neural stem cells (NSCs) during brain development. In this study, the expression of methyl-CpG-binding protein-2 (Mecp2), a global chromatin organizer and a crucial regulator of synaptic proteins, was analyzed in NSCs obtained from the forebrain of embryos of diabetic mice.

View Article and Find Full Text PDF

Anatomy is an important component in the vertical integration of basic science and clinical practice. Two common pedagogies are cadaveric dissection and examination of prosected specimens. Comparative studies mostly evaluate their immediate effectiveness.

View Article and Find Full Text PDF
Article Synopsis
  • Hypertrophic cardiomyopathy (HCM) is a major global risk factor for cardiovascular deaths, and while hypertrophy can be an adaptive response, prolonged hypertrophy can lead to heart failure.
  • Prdm16 is not necessary for initial heart development but is essential in adult hearts for maintaining mitochondrial function and preventing hypertrophy as one ages.
  • Deleting Prdm16 in heart cells leads to issues like cardiac hypertrophy, fibrosis, mitochondrial dysfunction, and a higher likelihood of heart failure, particularly under metabolic stress.
View Article and Find Full Text PDF

Neurological disorders are the most devastating and challenging diseases associated with the central nervous system (CNS). The blood-brain barrier (BBB) maintains homeostasis of the brain and contributes towards the maintenance of a very delicate microenvironment, impairing the transport of many therapeutics into the CNS and making the management of common neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebrovascular diseases (CVDs) and traumatic brain injury (TBI), exceptionally complicated. Nanoparticle (NP) technology offers a platform for the design of tissue-specific drug carrying systems owing to its versatile and modifiable nature.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy.

View Article and Find Full Text PDF

Aloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering. The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR), and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated using an electrospinning technique and were characterized for surface morphology, the successful incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how silica-coated gold nanoparticles (Au(SiO)) can enhance the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts when incorporated into multifunctional nanofibrous scaffolds for bone tissue engineering (BTE).
  • Various scaffolds made from biocompatible materials like poly-ε-caprolactone (PCL) and silk fibroin (SF) were created using electrospinning, showing favorable properties such as high porosity (88-92%) and appropriate fiber sizes for promoting effective cell interactions.
  • Results demonstrated that scaffolds with added SF and Au(SiO) significantly improved mechanical strength and promoted hMSCs' oste
View Article and Find Full Text PDF

The emergence of nanotechnology has greatly impacted our daily lives. Multiple products, including cosmetics, pharmaceuticals, electronics and food, are produced with incorporation of nanomaterials (NMs). Nanotechnology has yielded many promising benefits, yet, there remains much uncertainty about the hazards of NMs to humans.

View Article and Find Full Text PDF

There is a growing demand for durable advanced wound dressings for the management of persistent infections after deep burn injuries. Herein, we demonstrated the preparation of durable antimicrobial nanofiber mats, by taking advantage of strong interfacial interactions between polyhydroxy antibiotics (with varying number of OH groups) and gelatin and their in-situ crosslinking with polydopamine (pDA) using ammonium carbonate diffusion method. Polydopamine crosslinking did not interfere with the antimicrobial efficacy of the loaded antibiotics.

View Article and Find Full Text PDF

Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM) and including new biomaterials could produce a better substitute for new bone tissue formation.

View Article and Find Full Text PDF

Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression.

View Article and Find Full Text PDF

Pharmaceutically active compounds require different modes of drug delivery systems to accomplish therapeutic activity without loss of its activity and lead to exhibit no adverse effects. Originating from ancient days, pulmonary mode of drug delivery is gaining much importance compared to other modes of drug delivery systems with respect to specific diseases. Pulmonary drug delivery is a non-invasive route for local and systemic therapies together with more patient convenience, compliance and is a needleless system.

View Article and Find Full Text PDF

The human genome project and its search for factors underlying human diseases has fostered a major human research effort. Therefore, unsurprisingly, in recent years we have observed an increasing number of studies on human islet cells, including disease approaches focusing on type 1 and type 2 diabetes. Yet, the field of islet and diabetes research relies on the legacy of rodent-based investigations, which have proven difficult to translate to humans, particularly in type 1 diabetes.

View Article and Find Full Text PDF

Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(l-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis.

View Article and Find Full Text PDF

Earlier peptidomic analysis of the skin secretion of Xenopus amieti led to the identification of orthologs of magainins and other peptides. This study investigated the degradation, in vitro insulin-releasing and acute metabolic effects of magainin-AM1 (GIKEFAHSLGKFG KAFVGGILNQ) and magainin-AM2 (GVSKILHSAGKFGKAFLGEIMKS). Plasma degradation was investigated using reversed-phase HPLC and MALDI-TOF mass spectroscopy.

View Article and Find Full Text PDF

Nanotechnology and tissue engineering have enabled engineering of nanostructured strategies to meet the current challenges in skin tissue regeneration. Electrospinning technology creates porous nanofibrous scaffolds to mimic extracellular matrix of the native tissues. The present study was performed to gain some insights into the applications of poly(l-lactic acid)-co-poly-(ε-caprolactone) (PLACL)/silk fibroin (SF)/vitamin E (VE)/curcumin (Cur) nanofibrous scaffolds and to assess their potential for being used as substrates for the culture of human dermal fibroblasts for skin tissue engineering.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) has complex effects in inflammation with both pro- and anti-inflammatory actions of this gas reported. Recent work suggests that a deficiency of H2S occurs in, and may contribute to, the chronic inflammation which underpins ongoing atherosclerotic disease. However, whether a high fat diet, predisposing to atherosclerosis, affects H2S metabolism is not known.

View Article and Find Full Text PDF

Aims: To investigate the role of endogenous hydrogen sulfide (H2S) in the control of aging and healthspan of Caenorhabditis elegans.

Results: We show that the model organism, C. elegans, synthesizes H2S.

View Article and Find Full Text PDF

Notch receptors and ligands mediate heterotypic cell signaling that is required for normal vascular development. Dysregulation of select Notch receptors in mouse vascular smooth muscle (VSM) and in genetic human syndromes causes functional impairment in some regional circulations, the mechanistic basis of which is undefined. In this study, we used a dominant-negative Mastermind-like (DNMAML1) to block signaling through all Notch receptors specifically in VSM to more broadly test a functional role for this pathway in vivo.

View Article and Find Full Text PDF

Congenital heart defects (CHD) are one of the most common defects in offspring of diabetic mothers. There is a clear association between maternal diabetes and CHD; however the underlying molecular mechanism remains unknown. We hypothesized that maternal diabetes affects with the expression of early developmental genes that regulate the essential developmental processes of the heart, thereby resulting in the pathogenesis of CHD.

View Article and Find Full Text PDF

Oxidative stress induced by maternal diabetes plays an important role in the development of cardiac malformations. Zinc (Zn) supplementation of animals and humans has been shown to ameliorate oxidative stress induced by diabetic cardiomyopathy. However, the role of Zn in the prevention of oxidative stress induced by diabetic cardiac embryopathy remains unknown.

View Article and Find Full Text PDF

In pregnancy, trophoblast invasion and uterine spiral artery remodelling are important for lowering maternal vascular resistance and increasing uteroplacental blood flow. Impaired spiral artery remodelling has been implicated in pre-eclampsia, a major complication of pregnancy, for a long time but the underlying mechanisms remain unclear. Corin (also known as atrial natriuretic peptide-converting enzyme) is a cardiac protease that activates atrial natriuretic peptide (ANP), a cardiac hormone that is important in regulating blood pressure.

View Article and Find Full Text PDF