We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves.
View Article and Find Full Text PDFGenome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are becoming mainstream tools to study mechanisms of development and disease. They have a broad range of applications in understanding disease processes, in vitro testing of novel therapies, and potential utility in regenerative medicine. Although the techniques for generating iPSCs are becoming more straightforward, scientists can expend considerable resources and time to establish this technology.
View Article and Find Full Text PDFRetroviruses have been shown to efficiently delete sequences between repeats as a consequence of the template switching ability of the viral reverse transcriptase. To evaluate this approach for deriving safety-modified lentiviral vectors, we created HIV-1 vectors engineered to delete the Rev-response element (RRE) during reverse-transcription by sandwiching the RRE between two non-functional hygromycin phosphotransferase sequences. Deletion of the RRE during reverse-transcription lead to the reconstitution of a functional hygromycin phosphotransferase gene in the target cell.
View Article and Find Full Text PDFThe use of RNA transport elements from different viruses can provide novel attributes to HIV-1-based gene delivery systems such as improved safety or Rev independence. We previously described an HIV-1 based gene delivery system that utilized the simian immunodeficiency virus Rev-response element (RRE) in place of the HIV-1 RRE. Despite the use of Rev for the production of vector stocks, we showed the utility of this system for delivery of Rev M10, a dominant-negative mutant of HIV-1 Rev, into T-cells.
View Article and Find Full Text PDFBackground: Human immunodeficiency virus type 1 (HIV-1)-based gene delivery systems are popular due to their superior efficiency of transduction of primary cells. However, these systems cannot be readily used for delivery of anti-HIV-1 genes that target constituents of the packaging system itself due to inimical effects on vector titer. Here we describe HIV-1-based packaging systems containing the Rev-response element (RRE), of simian immunodeficiency virus (SIV) in place of the HIV-1 RRE.
View Article and Find Full Text PDFA major side effect of cancer chemotherapy is myelosuppression. Expression of drug-resistance genes in hematopoietic stem cells (HSC) using gene transfer methodologies holds the promise of overcoming marrow toxicity in cancer chemotherapy. Adequate protection of marrow cells in cancer patients from myelotoxicity in this way would permit the use of escalating doses of chemotherapy for eradicating residual disease.
View Article and Find Full Text PDFThe human O(6)-methylguanine-DNA methyltransferase (MGMT) gene and its mutants have been used for in vivo selection of transduced hematopoietic stem cells with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) alone or in combination with O(6)-benzylguanine (BG). To allow similar in vivo selection in dogs, without the risk of inducing an immune response, we have cloned the canine MGMT drug resistance gene. Comparison of canine and human MGMT-coding regions indicates that there is about 62% amino acid identity and 78% similarity between the two MGMTs.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) based gene transfer systems are gaining in popularity due to their ability to transduce terminally differentiated and non-dividing cells. Oncoretroviral vectors based on Moloney murine leukemia virus (MoMLV), on the other hand, can only transduce dividing cells. The reasons for increased ability of lentivirus vectors to transduce such cells has been attributed to several of the viral proteins (integrase, matrix and Vpr) that are purported to be involved in the nuclear import of the pre-integration complex (PIC).
View Article and Find Full Text PDFTat-encoding human immunodeficiency virus type 1 (HIV-1) gene transfer vectors were evaluated in primary canine bone marrow mononuclear cells. Tat vectors provided higher levels of gene expression than vectors with internal promoters. The HIV-1 vector was also more efficient than Moloney murine leukemia virus (MoMLV) vectors for transduction of canine bone marrow mononuclear cells in vitro.
View Article and Find Full Text PDFWe describe bicistronic single-exon Tat (72-amino-acid Tat [Tat72])- and full-length Tat (Tat86)-encoding gene transfer vectors based on human immunodeficiency virus type 1 (HIV-1). We created versions of these vectors that were rendered Rev independent by using the constitutive transport element (CTE) from Mason-Pfizer monkey virus (MPMV). Tat72-encoding vectors performed better than Tat86-expressing vectors in gene transfer experiments.
View Article and Find Full Text PDFA lentivirus-based packaging system was designed to reduce the chance of recombination between helper and gene transfer vector sequences by using the constitutive transport element (CTE) derived from Mason-Pfizer monkey virus for expression of the viral proteins and the Rev-Rev response element (RRE) combination for expression of the gene transfer vector. Using this approach, we evaluated a series of human immunodeficiency virus type 1 packaging constructs that express one or more accessory proteins (Vif, Vpr, and Vpu), in addition to the Gag and Pol proteins, for particle formation and virus stock production for gene transfer. Constructs that also express Vpr or both Vpr and Vpu produced more particles, as measured by a p24 assay, than did plasmids that did not contain these sequences.
View Article and Find Full Text PDFWe describe the generation of stable human immunodeficiency virus type 1 (HIV-1)-packaging lines that constitutively express high levels of HIV-1 structural proteins in either a Rev-dependent or a Rev-independent fashion. These cell lines were used to assess gene transfer by using an HIV-1 vector expressing the hygromycin B resistance gene and to study the effects of Rev, Tat, and Nef on the vector titer. The Rev-independent cell lines were created by using gag-pol and env expression vectors that contain the Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE).
View Article and Find Full Text PDFThe core of human immunodeficiency virus type 1 is derived from two precursor polyproteins, Pr55gag and Pr160gag-pol. The Gag precursor can assemble into immature virus-like particles when expressed by itself, while the Gag-Pol precursor lacks particle-forming ability. We have shown previously that the Gag precursor is able to "rescue" the Gag-Pol precursor into virus-like particles when the two polyproteins are expressed in the same cell by using separate simian virus 40-based plasmid expression vectors.
View Article and Find Full Text PDFThe roles of the human immunodeficiency virus precursor polyproteins Pr55gag and Pr160gag-pol in viral core assembly were studied in CMT3-COS cells. To do this, the precursors were expressed separately by using a simian virus 40 late replacement vector system described previously. Consistent with previously published data, our results show that the Pr55gag precursor, when expressed alone, was able to form particles which had an immature morphology and that particle formation required the presence of a myristate addition signal at the amino terminus of the precursor.
View Article and Find Full Text PDFThe effect of anionic polymers (dextran sulfate, heparin and chondroitin sulfate) on fusion of Sendai virus with erythrocyte ghosts was studied. The effect of pH on the activity of these anionic polymers was also investigated. In order to examine the interaction of such polymers with the Sendai virion and erythrocyte ghost surfaces, the binding of virions to erythrocyte ghosts and the aggregation of virions and/or erythrocyte ghosts were also measured with respect to the same parameters.
View Article and Find Full Text PDFThe characteristics of fusion of respiratory syncytial virus (RSV) with HEp-2 cells were studied by the R18 fluorescence dequenching assay of membrane fusion. A gradual increase in fluorescence intensity indicative of virion-cell fusion was observed when R18-labeled RSV was incubated with HEp-2 cells. Approximately 35% dequenching of the probe fluorescence was observed in 1 h at 37 degrees C.
View Article and Find Full Text PDFBiomed Biochim Acta
September 1991
The effect of dextran sulfate on the fusion of Sendai virus and erythrocyte ghosts was studied as a function of dextran sulfate concentration and pH of cell suspension solutions. In order to examine the interaction of dextran sulfate with Sendai virion and erythrocyte ghost surfaces, the turbidity of cell suspensions was also measured with respect to the same parameters as above. It was found that dextran sulfate inhibited the fusion of Sendai virus with erythrocyte ghosts.
View Article and Find Full Text PDFPassive haemagglutination (PHA) and Staphylococcus aureus protein A--antibody-mediated haemagglutination (SAPA-AMHA) were used to analyse the cross-reactions of rabbit antisera against four strains of Bacteroides fragilis. There was cross-reactivity between all the strains tested but strain-specific reactions were obtained with three strains. Two to 32-fold higher antibody titres were obtained with SAPA-AMHA than with PHA.
View Article and Find Full Text PDF