Publications by authors named "Srinivasa Raju Datla"

Background: Despite promising results in clinical studies, the mechanism for the beneficial effects of allogenic cell-based therapies remains unclear. Macrophages are not only critical mediators of inflammation but also critical players in cardiac remodeling. We hypothesized that transplanted allogenic rat cardiac progenitor cells (rCPCs) augment T-regulatory cells which ultimately promote proliferation of M2 like macrophages by an as-yet undefined mechanism.

View Article and Find Full Text PDF

The stem cell field is hindered by its inability to noninvasively monitor transplanted cells within the target organ in a repeatable, time-sensitive, and condition-specific manner. We hypothesized that quantifying and characterizing transplanted cell-derived exosomes in the recipient plasma would enable reliable, noninvasive surveillance of the conditional activity of the transplanted cells. To test this hypothesis, we used a human-into-rat xenogeneic myocardial infarction model comparing two well-studied progenitor cell types: cardiosphere-derived cells (CDCs) and c-kit cardiac progenitor cells (CPCs), both derived from the right atrial appendage of adults undergoing cardiopulmonary bypass.

View Article and Find Full Text PDF

Polymerase delta-interacting protein 2 (Poldip2) is a multi-functional protein with numerous roles in the vasculature, including the regulation of cell apoptosis and migration, as well as extracellular matrix deposition; however, its role in VSMC proliferation and neointimal formation is unknown. In this study, we investigated the role of Poldip2 in intraluminal wire-injury induced neointima formation and proliferation of vascular smooth muscle cells in vitro and in vivo. Poldip2 expression was observed in the intima and media of human atherosclerotic arteries, where it colocalized with proliferating cell nuclear antigen (PCNA).

View Article and Find Full Text PDF

Rationale: Cardiac progenitor cells are an attractive cell type for tissue regeneration, but their mechanism for myocardial remodeling is still unclear.

Objective: This investigation determines how chronological age influences the phenotypic characteristics and the secretome of human cardiac progenitor cells (CPCs), and their potential to recover injured myocardium.

Methods And Results: Adult (aCPCs) and neonatal (nCPCs) cells were derived from patients aged >40 years or <1 month, respectively, and their functional potential was determined in a rodent myocardial infarction model.

View Article and Find Full Text PDF

Background: We sought to determine the location, expression, and characterization of cardiac stem cells (CSCs) in children with end-stage heart failure (ESHF). We hypothesized ESHF myocardium would contain an increased number of CSCs relative to age-matched healthy myocardium, and ESHF-derived CSCs would have diminished functional capacity as evidenced by reduced telomere length.

Methods: Tissue samples were obtained from the explanted hearts of children undergoing heart transplantation with ESHF, defined as New York Heart Association class III or IV and ejection fraction less than 0.

View Article and Find Full Text PDF

We have demonstrated that human neonatal cardiosphere-derived cells (CDCs) derived from the young are more regenerative due to their robust secretome. However, it is unclear how the decompensated pediatric heart impacts the functional activity of their CDCs. Our aim was to characterize the potency of pediatric CDCs derived from normal functioning myocardium of control heart disease (CHD) patients to those generated from age-matched end stage heart failure (ESHF) patients and to determine the mechanisms involved.

View Article and Find Full Text PDF

Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions.

View Article and Find Full Text PDF

Objective: On the basis of previous evidence that polymerase delta interacting protein 2 (Poldip2) increases reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) activity in vascular smooth muscle cells, we hypothesized that in vivo knockdown of Poldip2 would inhibit reactive oxygen species production and alter vascular function.

Approach And Results: Because homozygous Poldip2 deletion is lethal, Poldip2(+/-) mice were used. Poldip2 mRNA and protein levels were reduced by ≈50% in Poldip2(+/-) aorta, with no change in p22phox, Nox1, Nox2, and Nox4 mRNAs.

View Article and Find Full Text PDF

Objective: Redox signaling mediated by Nox2-containing NADPH oxidase has been implicated in angiogenic responses both in vitro and in vivo. Because Nox4 type NADPH oxidase is also highly expressed in endothelial cells, we studied the role of Nox4 in angiogenic responses in human endothelial cells in culture.

Methods And Results: Inhibition of Nox4 expression by small interfering RNA reduced angiogenic responses as assessed by the tube formation and wound healing assays, in both human microvascular and umbilical vein endothelial cells.

View Article and Find Full Text PDF

NO is known to induce expression of heme oxygenase-1, an antioxidant enzyme in blood vessels. We tested whether NO might modulate the endothelial NADPH oxidase function via heme oxygenase-1. In human microvascular endothelial cells, the NO donor DETA-NONOate (0.

View Article and Find Full Text PDF

Synthesis of prodrugs of orally active COX-2 inhibitor 3 involving sulfamoyl (SO(2)NH(2)) and hydroxymethyl (CH(2)OH) groups, and their biological evaluation are described. Of these prodrugs, the N-propionyl sulfonamide sodium 3k was found to be much superior to the parent compound 3 and other marketed COX-2 inhibitors in carrageenan induced rat paw edema model of inflammation due to highly elevated drug levels in systemic circulation. This prodrug has a potential both for oral as well as parenteral administration due to impressive analgesic activity, antipyretic potency, and extraordinary water solubility.

View Article and Find Full Text PDF

Analogs of 1,5-diarylpyrazoles with a novel pharmacophore at N1 were designed, synthesized and evaluated for the in-vitro cyclooxygenase (COX-1/COX-2) inhibitory activity. The variations at/around position-4 of the C-5 phenyl ring in conjunction with a CF3 and CHF2 groups at C-3 exhibited a high degree of potency and selectivity index (SI) for COX-2 inhibition. The in-vivo evaluation of these potent compounds with a few earlier ones indicated the 4-OMe-phenyl analog and the 4-NHMe-phenyl analog with a CF3, and the 4-OEt-phenyl analog with a CHF2 group at C-3 to possess superior potency than celecoxib.

View Article and Find Full Text PDF