Publications by authors named "Srinivasa R Tamalampudi"

Tunable optical materials are indispensable elements in modern optoelectronics, especially in integrated photonics circuits where precise control over the effective refractive index is essential for diverse applications. Two-dimensional materials like transition metal dichalcogenides (TMDs) and graphene exhibit remarkable optical responses to external stimuli. However, achieving distinctive modulation across short-wave infrared (SWIR) regions while enabling precise phase control at low signal loss within a compact footprint remains an ongoing challenge.

View Article and Find Full Text PDF

The outstanding performance and facile processability turn two-dimensional materials (2DMs) into the most sought-after class of semiconductors for optoelectronics applications. Yet, significant progress has been made toward the hybrid integration of these materials on silicon photonics (SiPh) platforms for a wide range of mid-infrared (MIR) applications. However, realizing 2D materials with a strong optical response in the NIR-MIR and excellent air stability is still a long-term goal.

View Article and Find Full Text PDF

Recent theoretical studies proposed that two-dimensional (2D) GaGeTe crystals have promising high detection sensitivity at infrared wavelengths and can offer ultra-fast operation. This can be attributed to their small optical bandgap and high carrier mobility. However, experimental studies on GaGeTe in the infrared region are lacking and this exciting property has not been explored yet.

View Article and Find Full Text PDF

We demonstrate that surfaces presenting heterogeneous and atomically flat domains can be directly and rapidly discriminated via robust intensive quantifiables by exploiting one-pass noninvasive methods in standard atomic force microscopy (AFM), single ∼2 min passes, or direct force reconstruction, i.e., ∼10 force profiles (∼10 min collection time), allowing data collection, interpretation, and presentation in under 20 min, including experimental AFM preparation and excluding only sample fabrication, in situ and without extra experimental or time load.

View Article and Find Full Text PDF

In this work, we study the surface energy of monolayer, bilayer and multilayer graphene coatings, produced through exfoliation of natural graphite flakes and chemical vapor deposition. We employ bimodal atomic force microscopy and micro-Raman spectroscopy for high spatial resolution and large area scanning of force of adhesion on the regions of the graphene/SiO2 surface with different graphene layers. Our measurements show that the interface conditions between graphene and SiO2 dominate the experimentally observed graphene surface energy.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses how transition metal dichalcogenides (TMDs) can exhibit superconductivity when influenced by an electric field due to their unique two-dimensional properties.
  • Experimental findings suggest that the superconductivity in MoS is linked to a multi-valley Fermi surface, instead of just the expected two electron pockets.
  • Low-temperature transport measurements reveal that emerging superconductivity correlates with the filling of various electron pockets and changes in Fermi surface topology, pointing to new avenues for discovering superconductors.
View Article and Find Full Text PDF

In this paper, we report the optoelectronic properties of multi-layered GeS nanosheet (∼28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ∼ 206 A W(-1) under 1.5 μW cm(-2) illumination at λ = 633 nm, Vg = 0 V, and Vds = 10 V.

View Article and Find Full Text PDF

Two-dimensional crystals with a wealth of exotic dimensional-dependent properties are promising candidates for next-generation ultrathin and flexible optoelectronic devices. For the first time, we demonstrate that few-layered InSe photodetectors, fabricated on both a rigid SiO2/Si substrate and a flexible polyethylene terephthalate (PET) film, are capable of conducting broadband photodetection from the visible to near-infrared region (450-785 nm) with high photoresponsivities of up to 12.3 AW(-1) at 450 nm (on SiO2/Si) and 3.

View Article and Find Full Text PDF

We present a chemical vapor deposition (CVD) method to catalytically synthesize large-area, transferless, single- to few-layer graphene sheets using hexamethyldisilazane (HMDS) on a SiO2/Si substrate as a carbon source and thermally evaporated alternating Ni/Cu/Ni layers as a catalyst. The as-synthesized graphene films were characterized by Raman spectroscopic imaging to identify single- to few-layer sheets. This HMDS-derived graphene layer is continuous over the entire growth substrate, and single- to trilayer mixed sheets can be up to 30 μm in the lateral dimension.

View Article and Find Full Text PDF