Microbial fuel cells (MFCs) are emerging technology for wastewater treatment by chemical oxygen demand (COD) reduction and simultaneous bioelectricity production. Fabrication of an effective proton exchange membrane (PEM) is a vital component for MFC performance. In this work, green chitosan-based (CS) PEMs were fabricated with graphene oxide (GO) as filler material (CS-GO) and cross-linked with phosphoric acid (CS-GO-P(24)) or sulfuric acid (CS-GO-S(24)) to determine their effect on PEM properties.
View Article and Find Full Text PDFThe effects of plasticization and cross-linking on the performance of chitosan as promising proton exchange membranes (PEMs) for bioelectricity generation in microbial fuel cells (MFCs) were investigated. The physico-chemical properties of chitosan (CS), sorbitol-chitosan (S-CS), phosphorylated-chitosan (CS-P) and phosphorylated-sorbitol-chitosan (S-CS-P) membranes were investigated by FESEM-EDS, FTIR-ATR, XRD, TGA, tensile strength and sorption studies. The performance of the fabricated PEMs was assessed by power density and cation exchange capacity (CEC).
View Article and Find Full Text PDFStructure analysis using X-ray and neutron powder diffraction and elemental mapping has been used to demonstrate that nominal A-site deficient Sr(2-x)FeMoO(6-δ) (0 ≤x≤ 0.5) compositions form as Mo-rich Sr(2)Fe(1-y)Mo(1+y)O(6) (0 ≤y≤ 0.2) perovskites at high temperatures and under reducing atmospheres.
View Article and Find Full Text PDFThe present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as precursors.
View Article and Find Full Text PDFIn order to minimize pollution problems and to conserve limited natural resources, a hydrometallurgical procedure was developed in this study to recover the valuable resources of silicon (Si), silver (Ag) and aluminum (Al) from scrap silicon solar battery cells. In this study, several methods of leaching, crystallization, precipitation, electrolysis and replacement were employed to investigate the recovery efficiency of Ag and Al from defective monocrystalline silicon solar battery cells. The defective solar battery cells were ground into powder followed by composition analysis with inductively coupled plasma-atomic emission spectrometry.
View Article and Find Full Text PDFIn order to minimize the problem of pollution and to conserve limited natural resources, a method to recover the valuable metals such as gold, silver and copper) present in the scrap integrated circuits (ICs) was developed in the present study. Roasting, grinding, screening, magnetic separation, melting and leaching were adopted to investigate the efficiency of recovery of gold, silver and copper from scrap ICs. The collected scrap IC samples were roasted at 850 °C to destroy their plastic resin sealing material, followed by screening and magnetic separation to separate the metals from the resin residue.
View Article and Find Full Text PDFA new biosorbent was developed by coating chitosan, a naturally and abundantly available biopolymer, on to polyvinyl chloride (PVC) beads. The biosorbent was characterized by FTIR spectra, porosity and surface area analyses. Equilibrium and column flow adsorption characteristics of copper(II) and nickel(II) ions on the biosorbent were studied.
View Article and Find Full Text PDF