Predicting peak pathogen loadings can provide a basis for watershed and water treatment plant management decisions that can minimize microbial risk to the public from contact or ingestion. Artificial neural network models (ANN) have been successfully applied to the complex problem of predicting peak pathogen loadings in surface waters. However, these data-driven models require substantial, multiparameter databases upon which to train, and missing input values for pathogen indicators must often be estimated.
View Article and Find Full Text PDFA database was probed with artificial neural network (ANN) and multivariate logistic regression (MLR) models to investigate the efficacy of predicting PCR-identified human adenovirus (ADV), Norwalk-like virus (NLV), and enterovirus (EV) presence or absence in shellfish harvested from diverse countries in Europe (Spain, Sweden, Greece, and the United Kingdom). The relative importance of numerical and heuristic input variables to the ANN model for each country and for the combined data was analyzed with a newly defined relative strength effect, which illuminated the importance of bacteriophages as potential viral indicators. The results of this analysis showed that ANN models predicted all types of viral presence and absence in shellfish with better precision than MLR models for a multicountry database.
View Article and Find Full Text PDFArtificial neural networks (ANNs) were successfully applied to data observations from a small watershed consisting of commonly measured indicator bacteria, weather conditions, and turbidity to distinguish between human sewage and animal-impacted runoff, fresh runoff from aged, and agricultural land-use-associated fresh runoff from that of suburban land-use-associated-fresh runoff. The ANNs were applied in a cascading, or hierarchical scheme. ANN performance was measured in two ways: (1) training and (2) testing.
View Article and Find Full Text PDF