Publications by authors named "Srinivas C Tadepalli"

Simulation-based medicine and the development of complex computer models of biological structures is becoming ubiquitous for advancing biomedical engineering and clinical research. Finite element analysis (FEA) has been widely used in the last few decades to understand and predict biomechanical phenomena. Modeling and simulation approaches in biomechanics are highly interdisciplinary, involving novice and skilled developers in all areas of biomedical engineering and biology.

View Article and Find Full Text PDF

Study Design: Experimental and finite element investigation of cervical laminoplasty.

Objective: To determine the stability of the construct post cervical laminoplasty.

Summary Of Background Data: Cervical laminoplasty is a widely used technique to widen the spinal canal dimensions without permanently removing the dorsal elements of the cervical spine.

View Article and Find Full Text PDF

Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics.

View Article and Find Full Text PDF

Introduction: Even though the use of titanium miniscrews to provide orthodontic anchorage has become increasingly popular, there is no universally accepted screw-placement protocol. Variables include the presence or absence of a pilot hole, placement through attached or unattached soft tissue, and angle of placement. The purpose of this in-vitro study was to test the hypothesis that screw angulation affects screw-anchorage resistance.

View Article and Find Full Text PDF

Hexahedral finite element mesh development for anatomic structures and biomedical implants can be cumbersome. Moreover, using traditional meshing techniques, detailed features may be inadequately captured. In this paper, we describe methodologies to handle multi-feature datasets (i.

View Article and Find Full Text PDF

Computational models of joint anatomy and function provide a means for biomechanists, physicians, and physical therapists to understand the effects of repetitive motion, acute injury, and degenerative diseases. Finite element models, for example, may be used to predict the outcome of a surgical intervention or to improve the design of prosthetic implants. Countless models have been developed over the years to address a myriad of orthopaedic procedures.

View Article and Find Full Text PDF

Musculoskeletal finite element (FE) analysis is an invaluable tool in orthopaedic research. Unfortunately, the demands that accompany anatomic mesh development often limit its utility. To ease the burden of mesh development and to address the need for subject-specific analysis, we developed IA-FEMesh, a user-friendly toolkit for generating hexahedral FE models.

View Article and Find Full Text PDF

Finite element (FE) analysis is a useful tool to study spine biomechanics as a complement to laboratory-driven experimental studies. Although individualized models have the potential to yield clinically relevant results, the demands associated with modeling the geometric complexity of the spine often limit its utility. Existing spine FE models share similar characteristics and are often based on similar assumptions, but vary in geometric fidelity due to the mesh generation techniques that were used.

View Article and Find Full Text PDF

Finite element (FE) analysis is a valuable tool in musculoskeletal research. The demands associated with mesh development, however, often prove daunting. In an effort to facilitate anatomic FE model development we have developed an open-source software toolkit (IA-FEMesh).

View Article and Find Full Text PDF