We solve the nonlinear Maxwell equations in an InP-based dielectric metamaterial, considering both two-photon absorption and photo-induced free-carrier absorption. We obtain the intensity-dependent reflection, absorption, and effective permittivity and permeability of the metamaterial. Our results show that nonlinear absorption dampens both the electric and magnetic Mie resonance, although the magnetic resonance is more affected because it occurs at longer wavelengths where the free-carrier absorption cross section is larger.
View Article and Find Full Text PDFWe develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.
View Article and Find Full Text PDFPolarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other.
View Article and Find Full Text PDF