Publications by authors named "Srini Kaveri"

Intravenous immunoglobulin (IVIg), a preparation of polyclonal serum IgG pooled from numerous blood donors, has been used for nearly three decades and is proving to be an efficient treatment for many autoimmune blistering diseases, including pemphigus vulgaris (PV). Despite its widespread use and therapeutic success, its mechanisms of action are not completely understood. Some of its anti-inflammatory and immunomodulatory actions have been studied.

View Article and Find Full Text PDF

Intravenous immunoglobulin (IVIG) is the mainstay of therapy for humoral immune deficiencies and numerous inflammatory disorders. Although the use of IVIG may be supplanted by several targeted therapies to cytokines, the ability of polyclonal normal IgG to act as an effector molecule as well as a regulatory molecule is a clear example of the polyfunctionality of IVIG. This article will address the mechanism of action of IVIG in a number of important conditions that are otherwise resistant to treatment.

View Article and Find Full Text PDF

Intravascular hemolysis occurs in diverse pathological conditions. Extracellular hemoglobin and heme have strong pro-oxidative and pro-inflammatory potentials that can contribute to the pathology of hemolytic diseases. However, many of the effects of extracellular hemoglobin and heme in hemolytic diseases are still not well understood.

View Article and Find Full Text PDF

Intravenous immunoglobulin (IVIg) is used as treatment for several autoimmune and inflammatory conditions, but its specific mechanisms are not fully understood. Herein, we aimed to evaluate, using systems biology and artificial intelligence techniques, the differences in the pathophysiological pathways of autoimmune and inflammatory conditions that show diverse responses to IVIg treatment. We also intended to determine the targets of IVIg involved in the best treatment response of the evaluated diseases.

View Article and Find Full Text PDF

Intravenous immunoglobulin (IVIG) is used to treat several autoimmune and inflammatory diseases, but some patients are refractory to IVIG and require alternative treatments. Identifying a biomarker that could segregate IVIG responders from non-responders has been a subject of intense research. Unfortunately, previous transcriptomic studies aimed at addressing IVIG resistance have failed to predict a biomarker that could identify IVIG-non-responders.

View Article and Find Full Text PDF

In this report we provide a hypothesis of how intravenous immunoglobulin (IvIg) (pooled therapeutic normal IgG) mitigates the severe disease after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The disease is caused by an overreaction of the innate immune system producing a cytokine storm and inflicting multiple organ damage. Our interpretation of IvIg therapy hinges on a recent analysis of the immune dysregulation in Covid-19 infection.

View Article and Find Full Text PDF

Intravenous immunoglobulin (IVIG), a pooled normal IgG from several thousand healthy donors and one of the commonly used immunotherapeutic molecules for the management of autoimmune and inflammatory diseases, has been explored for the treatment of coronavirus disease-19 (COVID-19). Although placebo-controlled, double-blind randomised clinical trials are lacking, current data from either retrospective, case series or open-label randomised controlled trials provide an indicator that IVIG immunotherapy could benefit severe and critically ill COVID-19 patients. See alsoShao et al.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has infected millions, with more than 275,000 fatal cases as of May 8, 2020. Currently, there are no specific COVID-19 therapies.

View Article and Find Full Text PDF

Therapeutic normal IgG intravenous immunoglobulin (IVIG) is a well-established first-line immunotherapy for many autoimmune and inflammatory diseases. Though several mechanisms have been proposed for the anti-inflammatory actions of IVIG, associated signaling pathways are not well studied. As β-catenin, the central component of the canonical Wnt pathway, plays an important role in imparting tolerogenic properties to dendritic cells (DCs) and in reducing inflammation, we explored whether IVIG induces the β-catenin pathway to exert anti-inflammatory effects.

View Article and Find Full Text PDF

Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented.

View Article and Find Full Text PDF

Basophils are rare granulocytes and dysregulated functions of these cells are associated with several atopic and non-atopic allergic diseases of skin, respiratory system and gastrointestinal tract. Both cytokines and immunoglobulin E (IgE) are implicated in mediating the basophil activation and pathogenesis of these disorders. Several reports have shown that healthy individuals, and patients with allergic disorders display IgG autoantibodies to IgE and hence functional characterization of these anti-IgE IgG autoantibodies is critical.

View Article and Find Full Text PDF
Article Synopsis
  • - High-mobility group box 1 (HMGB1) levels in serum are linked to inflammation and have been proposed as a biomarker for various pathologies.
  • - In a previous study, low levels of autoantibodies against HMGB1 were found to be associated with better survival rates in sepsis patients.
  • - This study examined two sepsis survivors who had high levels of specific HMGB1 antibodies, supporting the idea that these protective antibodies can be produced in response to septic shock.
View Article and Find Full Text PDF
Article Synopsis
  • * nAbs provide immediate defense against infections while supporting broader immune functions, including clearing debris, regulating B cell activities, and managing autoimmune responses.
  • * They are distinct from specific antibodies due to their ability to recognize shared epitopes of self and foreign antigens, and are utilized therapeutically in conditions like immunodeficiencies and autoimmune diseases through treatments such as intravenous immunoglobulin (IVIG).
View Article and Find Full Text PDF

The innate immune response provides a first line of defense against common microorganisms and, for more complex and/or recurring situations where pathogens must be eliminated, an adaptive immune response has emerged and evolved to provide better protection against subsequent infections. However, such dichotomy has to be reevaluated because innate B cells (e.g.

View Article and Find Full Text PDF

Therapeutic intravenous immunoglobulin preparations (IVIg) are used for treatment of wide range of autoimmune and inflammatory diseases. Versatile mechanisms have been reported to contribute to the immunomodulatory effects of IVIg. Here we demonstrate that IVIg has a strong potential to inhibit pro-inflammatory effect of extracellular heme.

View Article and Find Full Text PDF

Intravenous immunoglobulin (IVIG) is one of the widely used immunotherapeutic molecules in the therapy of autoimmune and inflammatory diseases. Previous reports demonstrate that one of the anti-inflammatory actions of IVIG implicates suppression of macrophage activation and release of their inflammatory mediators. However, macrophages are highly plastic and depending on the microenvironmental signals, macrophages can be polarized into pro-inflammatory classic (M1) or anti-inflammatory alternative (M2) type.

View Article and Find Full Text PDF

Intravenous immunoglobulin (IVIg) therapy has diverse anti-inflammatory and immunomodulatory effects and has been employed successfully in autoimmune and inflammatory diseases. The role of IVIg therapy in the modulation of intestinal inflammation and fungal elimination has not been yet investigated. We studied IVIg therapy in a murine model of dextran sulfate sodium (DSS)-induced colitis.

View Article and Find Full Text PDF

Background: Therapeutic normal IgG or intravenous immunoglobulin (IVIG) exerts anti-inflammatory effects through several mutually nonexclusive mechanisms. Recent data in mouse models of autoimmune disease suggest that IVIG induces IL-4 in basophils by enhancing IL-33 in SIGN-related 1-positive innate cells. However, translational insight on these data is lacking.

View Article and Find Full Text PDF

Intravenous immunoglobuin (IVIG) exerts protective effects in experimental allergic bronchopulmonary aspergillosis (ABPA) via a sialylation-dependent mechanism. The protection was associated with reduced recruitment of eosinophils, diminished goblet cell hyperplasia, suppressed Th2 and Th17 responses and reciprocally enhanced regulatory T cells and IL-10, and decreased IgE levels in the circulation.

View Article and Find Full Text PDF