Publications by authors named "Srinath Krishnamurthy"

Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further.

View Article and Find Full Text PDF
Article Synopsis
  • Protein machines, like the Sec translocase, use conformational motions to transport a wide range of non-folded preproteins across bacterial membranes.
  • The ATPase component, SecA, has a dynamic preprotein clamp that works with an ATP motor, which is regulated by ATP and ADP to achieve efficient translocation.
  • The process involves preproteins interacting with these dynamics, where signal peptides aid in clamp closing and mature domains help release ADP, ultimately leading to successful translocation of the proteins.
View Article and Find Full Text PDF

With differential hydrogen/deuterium exchange, differences in the structure and dynamics of protein states can be studied. Detecting statistically significant differentially deuterated peptides is crucial to draw meaningful conclusions about the distinct conformations and dynamics of the protein under study. Here, we introduced a linear model in combination with an empirical Bayes approach to detect differentially deuterated peptides.

View Article and Find Full Text PDF

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to monitor protein intrinsic dynamics. The technique provides high-resolution information on how protein intrinsic dynamics are altered in response to biological signals, such as ligand binding, oligomerization, or allosteric networks. However, identification, interpretation, and visualization of such events from HDX-MS data sets is challenging as these data sets consist of many individual data points collected across peptides, time points, and experimental conditions.

View Article and Find Full Text PDF

The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA.

View Article and Find Full Text PDF

Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting.

View Article and Find Full Text PDF

Spatiotemporal control of the cAMP signaling pathway is governed by both hormonal stimulation of cAMP generation by adenylyl cyclases (activation phase) and cAMP hydrolysis by phosphodiesterases (PDEs) (termination phase). The termination phase is initiated by PDEs actively targeting the protein kinase A (PKA) R-subunit through formation of a PDE-PKAR-cyclic adenosine monophosphate (cAMP) complex (the termination complex). Our results using PDE8 as a model PDE, reveal that PDEs mediate active hydrolysis of cAMP bound to its receptor RIα by enhancing the enzymatic activity.

View Article and Find Full Text PDF
Article Synopsis
  • The heterotrimeric AMP-activated protein kinase (AMPK) is an enzyme that gets activated in response to rising levels of AMP in cells, but myristoylation on its β-subunit keeps it inactive by preventing phosphorylation.
  • Researchers used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to study the structure and dynamics of both myristoylated and non-myristoylated forms of AMPK.
  • The study found that while ATP.Mg stabilizes myristoylated AMPK, it does not have the same effect on non-myristoylated AMPK, which may explain why myristoylated AMPK has a lower phosphorylation rate in conditions where ATP is abundant, such as in skeletal muscle.
View Article and Find Full Text PDF
Article Synopsis
  • A key challenge in studying protein-ligand interactions is distinguishing local binding site changes from global conformational shifts, especially with low-affinity ligands.
  • Amide hydrogen deuterium exchange mass spectrometry (HDXMS) is an effective technique that provides insights into both high-affinity and transient interactions, particularly in this study focused on the ATPase domain of Hsp90.
  • HDXMS can identify binding sites and assess allosteric effects, making it a valuable method for screening compounds and enhancing fragment-based ligand discovery.
View Article and Find Full Text PDF

The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway.

View Article and Find Full Text PDF

Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs.

View Article and Find Full Text PDF

Most double-stranded DNA (dsDNA) viruses, including bacteriophages and herpesviruses, rely on a staged assembly process of capsid formation. A viral protease is required for many of them to disconnect scaffolding domains/proteins from the capsid shell, therefore priming the maturation process. We used the bacteriophage HK97 as a model system to decipher the molecular mechanisms underlying the recruitment of the maturation protease by the assembling procapsid and the influence exerted onto the latter.

View Article and Find Full Text PDF

cAMP signaling is a fundamental cellular process necessary for mediating responses to hormonal stimuli. In contrast to cAMP-dependent activation of protein kinase A (PKA), an important cellular target, far less is known on termination in cAMP signaling, specifically how phosphodiesterases (PDEs) facilitate dissociation and hydrolysis of bound cAMP. In this study, we have probed the dynamics of a ternary complex of PKA and a PDE-RegA with an excess of a PDE-nonhydrolyzable cAMP analog, Sp-cAMPS by amide hydrogen/deuterium exchange mass spectrometry (HDXMS).

View Article and Find Full Text PDF

Protein identification in polyacrylamide gel electrophoresis (PAGE) requires post-electrophoretic steps like fixing, staining and destaining of the gel, which are time-consuming and cumbersome. We have developed a method for direct visualization of protein bands in PAGE using tetrakis(4-sulfonato phenyl)porphyrin (TPPS) as a dye without the need for any post electrophoretic steps, where separation and recovery of enzymes become much easier for further analysis. Activity staining was done to prove that the biochemical activity of the enzymes was preserved after electrophoresis.

View Article and Find Full Text PDF

The use of tetraammonium tetrakis(4-sulphonato)phenyl porphyrin (TPPS), a water-soluble anionic compound, as a stain to analyse bacterial cells using fluorescent microscopy was investigated. TPPS was effectively used to analyse two different bacteria: Pseudomonas aeruginosa and Bacillus cereus. The variation in brightness with varying concentrations of TPPS was studied.

View Article and Find Full Text PDF

We took a discovery approach to explore the actions of cAMP and two of its analogs, one a cAMP mimic ((S(p))-adenosine cyclic 3':5'-monophosphorothioate ((S(p))-cAMPS)) and the other a diastereoisomeric antagonist ((R(p))-cAMPS), on a model system of the type Iα cyclic AMP-dependent protein kinase holoenzyme, RIα(91-244)·C-subunit, by using fluorescence spectroscopy and amide H/(2)H exchange mass spectrometry. Specifically, for the fluorescence experiments, fluorescein maleimide was conjugated to three cysteine single residue substitution mutants, R92C, T104C, and R239C, of RIα(91-244), and the effects of cAMP, (S(p))-cAMPS, and (R(p))-cAMPS on the kinetics of R-C binding and the time-resolved anisotropy of the reporter group at each conjugation site were measured. For the amide exchange experiments, ESI-TOF mass spectrometry with pepsin proteolytic fragmentation was used to assess the effects of (R(p))-cAMPS on amide exchange of the RIα(91-244)·C-subunit complex.

View Article and Find Full Text PDF