Publications by authors named "Srinath Goskula"

Microporous SAPO-35 molecular sieves (Levyne type) were synthesized in non-aqueous media by using different inorganic promoters (HClO , HF, HPO, and NaNO) to enhance the rate of crystallization, and the as-synthesized materials were characterized by using different methods such as powder X-ray diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR), Brunauer-Emmett-Teller (BET) analysis, and X-ray photoelectron spectroscopy (XPS). From PXRD patterns, it was found that all the materials have a highly crystalline nature without any other impurities. SEM images reveal rhombohedral particles in all synthesis conditions.

View Article and Find Full Text PDF

In the present study, we have reported the synthesis of a transition metal (Me = Ti, V, and Pd) incorporated into MCM-41 mesoporous molecular sieves (Si/Me = 20) synthesized by the sol-gel method. Their physicochemical properties were studied in detail by standard techniques like low angle powder X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDXS), transmission electron microscopy (TEM), N adsorption/desorption studies, and thermogravimetric-differential thermal (TG-DTA) analysis and spectral studies like Fourier transform infrared spectroscopic analysis (FT-IR), diffuse reflectance ultraviolet-visible spectroscopic analysis (UV-Visible-DRS), and X-ray photoelectron spectroscopy (XPS). The XRD patterns prove that the material's phase identity is the same irrespective of metal incorporation.

View Article and Find Full Text PDF

In the present study, we synthesized several high-surface area VO/TiO-SiO catalysts (vanado titanium silicate, VTS). The synthesized materials were characterized by PXRD, FE-SEM/EDAX, TEM, FTIR, UV-Vis, XPS, fluorescence and photocatalytic activity studies. The small-angle powder X-ray diffraction pattern shows that the 110 and 200 planes are merged to become a single broad peak.

View Article and Find Full Text PDF