Capturing cell-to-cell signals in a three-dimensional (3D) environment is key to studying cellular functions. A major challenge in the current culturing methods is the lack of accurately capturing multicellular 3D environments. In this study, we established a framework for 3D bioprinting plant cells to study cell viability, cell division, and cell identity.
View Article and Find Full Text PDFHydrogel encapsulation has been widely utilized in the study of fundamental cellular mechanisms and has been shown to provide a better representation of the complex microenvironment in natural biological conditions of mammalian cells. In this review, we provide a background into the adoption of hydrogel encapsulation methods in the study of mammalian cells, highlight some key findings that may aid with the adoption of similar methods for the study of plant cells, including the potential challenges and considerations, and discuss key findings of studies that have utilized these methods in plant sciences.
View Article and Find Full Text PDFPurpose: Guided cell migration refers to the engineering of local cell environment to specifically direct cell migration and has important applications such as utilization in cell sorting and wound healing assays. Graded micropillar surfaces have been utilized for achieving guided cell migration. Topographic parameters such as micropillar diameter and spacing gradient may have effects on the morphology of attached cells.
View Article and Find Full Text PDFPhotocrosslinkable polymers such as gelatin methacrylate (GelMA) have various 3D bioprinting applications. These polymers crosslink upon exposure to UV irradiation with the existence of an appropriate photoinitiator. Two photoinitiators, Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) are commonly used.
View Article and Find Full Text PDFGelatin methacrylate (GelMA) has been gaining popularity in recent years as a photo-crosslinkable biomaterial widely used in a variety of bioprinting and tissue engineering applications. Several studies have established the effects of process-based and material-based parameters on the physical-mechanical properties and microstructure of GelMA hydrogels. However, the effect of encapsulated cells on the physical-mechanical properties and microstructure of GelMA hydrogels has not been fully understood.
View Article and Find Full Text PDFIt has been widely recognized that one of the critical limitations in biofabrication of functional tissues/organs is lack of vascular networks which provide tissues and organs with oxygen and nutrients. Biofabrication of 3D vascular-like constructs is a reasonable first step towards successful printing of functional tissues and organs. In this paper, a dynamic optical projection stereolithography system has been implemented to successfully fabricate 3D Y-shaped tubular constructs with living cells encapsulated.
View Article and Find Full Text PDFHydrogels have been widely used as extracellular matrix materials in various three-dimensional bioprinting applications. However, they possess limitations such as insufficient mechanical integrity and strength, especially in the vascular applications requiring suture retention and tolerance of systemic intraluminal pressure. Interpenetrating network hydrogels are unique mixtures of two separate hydrogels with enhanced properties.
View Article and Find Full Text PDF