Publications by authors named "Srikrishna Tummala"

The use of colloidal nanoparticles suffers from the drawbacks of potential color interference and substrate-induced aggregation. To overcome the limitations, a catalyst was developed by crosslinking Cu-doped carbon dots (Cu-CDs) with chitosan. Cu-CDs with high peroxidase activity were prepared by using a rapid microwave-assisted method.

View Article and Find Full Text PDF

Boron and nitrogen co-doped carbon dots (B, N-CDs) were fabricated through a simple, one-step hydrothermal reaction of citric acid, boric acid, and tris base. The obtained B, N-CDs exhibit excitation-dependent fluorescence, high quantum yield (QY), biocompatibility, photostability, and aqueous solubility. The QY was substantially increased to 57% by doping boron atoms.

View Article and Find Full Text PDF

Oxidative stress resulting from reactive oxygen species (ROS) is known to play a key role in numerous neurological disorders, including neuropathic pain. Morphine is one of the commonly used opioids for pain management. However, long-term administration of morphine results in morphine antinociceptive tolerance (MAT) through elevation of ROS and suppression of natural antioxidant defense mechanisms.

View Article and Find Full Text PDF

We present a sensitive and rapid screening method for the determination of β-lactamase activity of antibiotic-resistant bacteria, by designing a pH-sensitive fluorescent dye-doped mesoporous silica nanoparticle encapsulated with penicillin G as a substrate. When penicillin G was hydrolysed by β-lactamase and converted into penicilloic acid, the acidic environment resulted in fluorescence quenching of the dye. The dye-doped mesoporous nanoparticles not only enhanced the β-lactamase-catalyzed reaction rate but also stablized the substrate, penicillin G, which degrades into penicilloic acid in a water solution without β-lactamase.

View Article and Find Full Text PDF

Neuropathic pain, resulting from the dysfunction of the peripheral and central nervous system, occurs in a variety of pathological conditions including trauma, diabetes, cancer, HIV, surgery, multiple sclerosis, ischemic attack, alcoholism, spinal cord damage, and many others. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. The clinical failure of most effective drugs is often not due to a lack of drug efficacy but due to the dose-limiting central nervous system (CNS) toxicity of the drugs that preclude dose escalation.

View Article and Find Full Text PDF