Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell.
View Article and Find Full Text PDFFor the first time, coordination geometry and structure of metal binding sites in biologically relevant systems are studied using chemical shift parameters obtained from solid-state NMR experiments and quantum chemical calculations. It is also the first extensive report looking at metal-imidazole interaction in the solid state. The principal values of the (113)Cd chemical shift anisotropy (CSA) tensor in crystalline cadmium histidinate and two different cadmium formates (hydrate and anhydrate) were experimentally measured to understand the effect of coordination number and geometry on (113)Cd CSA.
View Article and Find Full Text PDFDetermination of (113)Cd chemical shift is of significant interest in NMR characterization of metal porphyrins, metal-histidine interactions, and other metal-ligand interactions in many bioinorganic complexes and metalloproteins. In this study, we present a detailed account of a number of quantum chemical investigations aimed at relating isotropic and anisotropic (113)Cd chemical shifts to the structure of several biologically relevant complexes with discrete and polymeric structures. Calculated and experimentally determined chemical shift values are compared to correlate the variation of the chemical shift values with the structural changes around the metal center.
View Article and Find Full Text PDF