Background: Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical.
View Article and Find Full Text PDFQuantitative susceptibility mapping employs regularization to reduce artifacts, yet many recent denoisers are unavailable for reconstruction. We developed a plug-and-play approach to QSM reconstruction (PnP QSM) and show its flexibility using several patch-based denoisers. We developed PnP QSM using alternating direction method of multiplier framework and applied collaborative filtering denoisers.
View Article and Find Full Text PDFPurpose: Tumor-associated macrophages (TAMs) are a key component of glioblastoma (GBM) microenvironment. Considering the differential role of different TAM phenotypes in iron metabolism with the M1 phenotype storing intracellular iron, and M2 phenotype releasing iron in the tumor microenvironment, we investigated MRI to quantify iron as an imaging biomarker for TAMs in GBM patients.
Methods: 21 adult patients with GBM underwent a 3D single echo gradient echo MRI sequence and quantitative susceptibility maps were generated.
J Cardiovasc Magn Reson
October 2021
Background: Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness, cardiomyocyte hypertrophy, and fibrosis. Adverse cardiac risk characterization has been performed using late gadolinium enhancement (LGE), native T1, and extracellular volume (ECV). Relaxation time constants are affected by background field inhomogeneity.
View Article and Find Full Text PDFPurpose: Magnetic susceptibility (Δχ) alterations have shown association with myocardial infarction (MI) iron deposition, yet there remains limited understanding of the relationship between relaxation rates and susceptibility or the effect of magnetic field strength. Hence, Δχ and in MI were compared at 3T and 7T.
Methods: Subacute MI was induced by coronary artery ligation in male Yorkshire swine.
Purpose: To perform automated myocardial segmentation and uptake classification from whole-body fluorine 18 fluorodeoxyglucose (FDG) PET.
Materials And Methods: In this retrospective study, consecutive patients who underwent FDG PET imaging for oncologic indications were included (July-August 2018). The left ventricle (LV) on whole-body FDG PET images was manually segmented and classified as showing no myocardial uptake, diffuse uptake, or partial uptake.
Background: Segmented cine cardiac MRI combines data from multiple heartbeats to achieve high spatiotemporal resolution cardiac images, yet predefined k-space segmentation trajectories can lead to suboptimal k-space sampling. In this work, we developed and evaluated an autonomous and closed-loop control system for radial k-space sampling (ARKS) to increase sampling uniformity.
Methods: The closed-loop system autonomously selects radial k-space sampling trajectory during live segmented cine MRI and attempts to optimize angular sampling uniformity by selecting views in regions of k-space that were not previously well-sampled.
Restoration of coronary blood flow after a heart attack can cause reperfusion injury potentially leading to impaired cardiac function, adverse tissue remodeling and heart failure. Iron is an essential biometal that may have a pathologic role in this process. There is a clinical need for a precise noninvasive method to detect iron for risk stratification of patients and therapy evaluation.
View Article and Find Full Text PDFBackground: Quantitative susceptibility mapping (QSM) uses prior information to reconstruct maps, but prior information may not show pathology and introduce inconsistencies with susceptibility maps, degrade image quality and inadvertently smoothing image features.
Purpose: To develop a local field data-driven QSM reconstruction that does not depend on spatial edge prior information.
Study Type: Retrospective.
Background: Endogenous contrast T1ρ cardiovascular magnetic resonance (CMR) can detect scar or infiltrative fibrosis in patients with ischemic or non-ischemic cardiomyopathy. Existing 2D T1ρ techniques have limited spatial coverage or require multiple breath-holds. The purpose of this project was to develop an accelerated, free-breathing 3D T1ρ mapping sequence with whole left ventricle coverage using a multicoil, compressed sensing (CS) reconstruction technique for rapid reconstruction of undersampled k-space data.
View Article and Find Full Text PDFPurpose: To evaluate the use of three different pre-reconstruction interpolation methods to convert non-Cartesian k-space data to Cartesian samples such that iterative reconstructions can be performed more simply and more rapidly.
Methods: Phantom as well as cardiac perfusion radial datasets were reconstructed by four different methods. Three of the methods used pre-reconstruction interpolation once followed by a fast Fourier transform (FFT) at each iteration.
Purpose: Develop self-gated MRI for distinct heartbeat morphologies in subjects with arrhythmias.
Methods: Golden angle radial data was obtained in seven sinus and eight arrhythmias subjects. An image-based cardiac navigator was derived from single-shot images, distinct beat types were identified, and images were reconstructed for repeated morphologies.
Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data.
Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence.
Current late gadolinium enhancement (LGE) imaging of left atrial (LA) scar or fibrosis is relatively slow and requires 5-15min to acquire an undersampled (R=1.7) 3D navigated dataset. The GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) based parallel imaging method is the current clinical standard for accelerating 3D LGE imaging of the LA and permits an acceleration factor ~R=1.
View Article and Find Full Text PDFDynamic contrast-enhanced magnetic resonance imaging (MRI) is a technique used to study and track contrast kinetics in an area of interest in the body over time. Reconstruction of images with high contrast and sharp edges from undersampled data is a challenge. While good results have been reported using a radial acquisition and a spatiotemporal constrained reconstruction (STCR) method, we propose improvements from using spatially adaptive weighting and an additional edge-based constraint.
View Article and Find Full Text PDF