Publications by authors named "Srikant Bykadi"

The focus of present investigation was to explore X-ray powder diffraction (XRPD) and solid-state nuclear magnetic resonance (ssNMR) techniques for amorphous and crystalline tacrolimus quantification in the sustained-release amorphous solid dispersion (ASD), and to propose discriminating dissolution method that can detect crystalline drug. The ASD and crystalline physical mixture was mixed in various proportions to make sample matrices containing 0%-100% crystalline-amorphous tacrolimus. Partial-least-square regression and principle component regression were applied to the spectral data.

View Article and Find Full Text PDF

Clinical performance of an amorphous solid dispersion (ASD) drug product is related to the amorphous drug content because of the greater bioavailability of this form of the drug than its crystalline form. Therefore, it is paramount to monitor the amorphous and the crystalline fractions in the ASD products. The objective of the present investigation was to study the feasibility of using a standardized X-ray powder diffraction (XRPD) in conjunction with chemometric methods to quantitate the amorphous and crystalline fraction of the drug in several tacrolimus ASD products.

View Article and Find Full Text PDF

The objective of the present research was to study the feasibility of using near-infrared (NIR) and Fourier transform infrared (FTIR)-based chemometric models in quantifying crystalline and amorphous tacrolimus from its sustained-release amorphous solid dispersion (ASD). ASD contained ethyl cellulose, hydroxypropyl methyl cellulose, and lactose monohydrate as carriers, and amorphous form of tacrolimus in it was confirmed by X-ray powder diffraction. Crystalline physical mixture was mixed with ASD in various proportions to prepare sample matrices containing 0%-100% amorphous/crystalline tacrolimus.

View Article and Find Full Text PDF

The objective of this study was to develop powder X-ray diffraction (XRPD) chemometric model for quantifying crystalline tacrolimus from solid dispersion (SD). Three SDs (amorphous tacrolimus component) with varying drug to excipient ratios (24.4%, 6.

View Article and Find Full Text PDF

Context: Colesevelam hydrochloride is used as an adjunct to diet and exercise to reduce elevated low-density lipoprotein (LDL) cholesterol in patients with primary hyperlipidemia as well as to improve glycemic control in patients with type 2 diabetes. This is likely to result in submission of abbreviated new drug applications (ANDA).

Objective: This study was conducted to compare the efficacy of two tablet products of colesevelam hydrochloride based on the in vitro binding of bile acid sodium salts of glycocholic acid (GC), glycochenodeoxycholic acid (GCDA) and taurodeoxycholic acid (TDCA).

View Article and Find Full Text PDF

The aims of this study were to systematically evaluate the effects of pH levels, phosphate concentrations, and tablet integrity on the phosphate binding profiles of lanthanum carbonate chewable tablets, and to compare the in vitro phosphate binding efficacy of one reference and two test products of lanthanum carbonate chewable tablets. Langmuir equation was utilized to calculate the binding constants k1 and k2 . The phosphate binding to the tablets of lanthanum carbonate product was pH dependent, with a faster binding rate at low pH.

View Article and Find Full Text PDF

Purpose: To determine if an IVIVC model can predict PK profiles of varying formulations of a BCS Class 1 drug that is a salt of a weak base.

Method: An IVIVC model (Level A) was created by correlating deconvoluted in vivo absorption data obtained from oral administration of 50 mg, 100 mg, and 200 mg fast and slow extended release formulations with in vitro percent dissolved using residual regression analysis. The model was then used to predict the in vivo profile of five test products that varied in formulation characteristics.

View Article and Find Full Text PDF

Recent genome-wide association studies suggest distinct roles for 12 human interferon-alpha (IFN-α) and 3 IFN-λ subtypes that may be elucidated by defining the expression patterns of these sets of genes. To overcome the impediment of high homology among each of the sets, we designed a quantitative real-time PCR assay that incorporates the use of molecular beacon and locked nucleic acid (LNA) probes, and in some instances, LNA oligonucleotide inhibitors. We then measured IFN subtype expression by human peripheral blood mononuclear cells and by purified monocytes, myeloid dendritic cells (mDC), plasmacytoid dendritic cells (pDC), and monocyte-derived macrophages (MDM), and -dendritic cells (MDDC) in response to poly I:C, lipopolysaccharide (LPS), imiquimod and CpG oligonucleotides.

View Article and Find Full Text PDF