Third-degree burns result in extensive damage to the skin's epidermal and dermal layers, with limited treatment options available. Currently, xenogeneic collagen-based skin grafts are used as scaffolds to integrate into the wound bed and provide a template for neodermis formation. Existing commercial products like Integra dermal templates rely on a time-consuming and variable dehydrothermal (DHT) crosslinking process.
View Article and Find Full Text PDFDysregulated macrophage responses and changes in tissue metabolism are hallmarks of chronic inflammation in the skin. However, the metabolic cues that direct and support macrophage functions in the skin are poorly understood. Here, we show that during sterile skin inflammation, the epidermis and macrophages uniquely depend on glycolysis and the TCA cycle, respectively.
View Article and Find Full Text PDFStiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence.
View Article and Find Full Text PDFStem cells have been shown to play an important role in regenerative medicine due to their proliferative and differentiation potential. The challenge, however, lies in regulating and controlling their potential for this purpose. Stem cells are regulated by growth factors as well as an array of biochemical and mechanical signals.
View Article and Find Full Text PDFMacrophages are highly responsive to the environmental cues and are the primary responders to tissue stress and damage. While much is known about the role of macrophages during inflammatory disease progression; the initial series of events that set up the inflammation remains less understood. In this study, we use next generation sequencing (NGS) of embryonic skin macrophages and the niche cells - skin epithelia and stroma in the epidermis specific knockout of integrin beta 1 (Itgβ1) model to uncover specific roles of each cell type and identify how these cell types communicate to initiate the sterile inflammatory response.
View Article and Find Full Text PDFGenerating high-quality electron microscopy images of the skin and keratinocytes can be challenging. Here we describe a simple protocol for scanning electron microscopy (SEM) of murine skin. The protocol enables characterization of the ultrastructure of the epidermis, dermis, hair follicles, basement membrane, and cell-cell junctions.
View Article and Find Full Text PDFVinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin.
View Article and Find Full Text PDFTransfer RNA (tRNA)-derived fragments (tRFs) are an emerging class of conserved small non-coding RNAs that play important roles in post-transcriptional gene regulation. High-throughput sequencing of multiple biological samples have identified heterogeneous species of tRFs with distinct functionalities. These small RNAs have garnered a lot of scientific attention due to their ubiquitous expression and versatility in regulating various biological processes.
View Article and Find Full Text PDFTransfer RNA (tRNA)-derived small RNAs (tsRNAs) have recently emerged as important regulators of protein translation and shown to have diverse biological functions. However, the underlying cellular and molecular mechanisms of tsRNA function in the context of dynamic cell-state transitions remain unclear. Expression analysis of tsRNAs in distinct heterologous cell and tissue models of stem vs.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is a complex network of proteins and proteoglycans secreted by keratinocytes, fibroblasts and immune cells. The function of the skin ECM has expanded from being a scaffold that provides structural integrity, to a more dynamic entity that is constantly remodeled to maintain tissue homeostasis. The ECM functions as ligands for cell surface receptors such as integrins, dystroglycans, and toll-like receptors (TLRs) and regulate cellular signaling and immune cell dynamics.
View Article and Find Full Text PDFSkin is the primary barrier against the external environment and develops a robust immune network for its surveillance. The origin of the resident immune cells of the skin has become a focus of interest over past a decade. Fate mapping studies have revealed that the macrophages home into the skin as early as E12.
View Article and Find Full Text PDFIdentifying key cellular events that facilitate stem cell function and tissue organization is crucial for understanding the process of regeneration. Planarians are powerful model system to study regeneration and stem cell (neoblast) function. Here, using planaria, we show that the initial events of regeneration, such as epithelialization and epidermal organization are critically regulated by a novel cytoplasmic poly A-binding protein, SMED-PABPC2.
View Article and Find Full Text PDFEpidermal knockout of integrin β1 results in complete disorganization of the basement membrane (BM), resulting in neonatal lethality. Here, we report that this disorganization is exacerbated by an early embryonic inflammatory response involving the recruitment of tissue-resident and monocyte-derived macrophages to the dermal-epidermal junction, associated with increased matrix metalloproteinase activity. Remarkably, the skin barrier in the integrin β1 knockout animals is intact, suggesting that this inflammatory response is initiated in a sterile environment.
View Article and Find Full Text PDFKindlins are essential FERM-domain-containing focal adhesion (FA) proteins required for proper integrin activation and signaling. Despite the widely accepted importance of each of the three mammalian kindlins in cell adhesion, the molecular basis for their function has yet to be fully elucidated, and the functional differences between isoforms have generally not been examined. Here, we report functional differences between kindlin-2 and -3 (also known as FERMT2 and FERMT3, respectively); GFP-tagged kindlin-2 localizes to FAs whereas kindlin-3 does not, and kindlin-2, but not kindlin-3, can rescue α5β1 integrin activation defects in kindlin-2-knockdown fibroblasts.
View Article and Find Full Text PDFCell Commun Adhes
December 2013
In the skin epidermis, adhesion to the underlying basement membrane is mediated through trans-membrane integrin receptors. In addition to a structural role, integrins can signal in a bi-directional manner though the membrane and thus play a crucial role in cell adhesion, migration, proliferation, and differentiation. In this review we will discuss the role of integrins and their network of partner proteins in normal skin development, and how dysregulation influences disease states such as skin blistering disorders and cancers.
View Article and Find Full Text PDFFocal adhesions (FAs), sites of tight adhesion to the extracellular matrix, are composed of clusters of transmembrane integrin adhesion receptors and intracellular proteins that link integrins to the actin cytoskeleton and signaling pathways. Two integrin-binding proteins present in FAs, kindlin-1 and kindlin-2, are important for integrin activation, FA formation, and signaling. Migfilin, originally identified in a yeast two-hybrid screen for kindlin-2-interacting proteins, is a LIM domain-containing adaptor protein found in FAs and implicated in control of cell adhesion, spreading, and migration.
View Article and Find Full Text PDFIntegrin-β1-null keratinocytes can adhere to fibronectin through integrin αvβ6, but form large peripheral focal adhesions and exhibit defective cell spreading. Here we report that, in addition to the reduced avidity of αvβ6 integrin binding to fibronectin, the inability of integrin β6 to efficiently bind and recruit kindlin-2 to focal adhesions directly contributes to these phenotypes. Kindlins regulate integrins through direct interactions with the integrin-β cytoplasmic tail and keratinocytes express kindlin-1 and kindlin-2.
View Article and Find Full Text PDFThe transcription factor p63 is important in the development of the skin as p63-null mice exhibit striking defects in embryonic epidermal morphogenesis. Understanding the mechanisms that underlie this phenotype is complicated by the existence of multiple p63 isoforms, including TAp63 and ΔNp63. To investigate the role of ΔNp63 in epidermal morphogenesis we generated ΔNp63 knock-in mice in which the ΔNp63-specific exon is replaced by GFP.
View Article and Find Full Text PDFPurpose: Osteonecrosis of the jaws (ONJ) is a clinical condition that is characterized by a nonhealing breach in the oral mucosa resulting in exposure of bone and has been increasingly reported in patients receiving bisphosphonate (BP) therapy. Although the pathogenesis and natural history of ONJ remain ill-defined, it appears that the oral soft tissues play a critical role in the development of this condition. We examined the effects of the nitrogen-containing BPs pamidronate and zoledronate on primary human gingival fibroblasts.
View Article and Find Full Text PDFBisphosphonates are used in the treatment of hypercalcemia of malignancy, skeletal complications associated with metastastic bone disease, Paget's disease, and osteoporosis. Osteonecrosis of the jaw (ONJ) is a recently described clinical condition that has been associated with the use of nitrogen-containing bisphosphonates. Reports describing this entity first appeared in the literature in 2003.
View Article and Find Full Text PDFPurpose: Bisphosphonates (BPs) are a widely used class of drugs that are effective in the treatment and prevention of osteoporosis, hypercalcemia of malignancy, and bone metastases associated with multiple myeloma, breast cancer, and other solid tumors. In the past several years there have been numerous reports describing the occurrence of osteonecrosis of the jaws (ONJ) associated with these drugs. Whether the ONJ lesion initiates in the oral mucosa or derives from the underlying bone is not well understood.
View Article and Find Full Text PDFIn response to alphabeta1 integrin signaling, transducers such as focal adhesion kinase (FAK) become activated, relaying to specific machineries and triggering distinct cellular responses. By conditionally ablating Fak in skin epidermis and culturing Fak-null keratinocytes, we show that FAK is dispensable for epidermal adhesion and basement membrane assembly, both of which require alphabeta1 integrins. FAK is also dispensible for proliferation/survival in enriched medium.
View Article and Find Full Text PDFalphabeta1 integrins have been implicated in the survival, spreading, and migration of cells and tissues. To explore the underlying biology, we identified conditions where primary beta1 null keratinocytes adhere, proliferate, and display robust alphavbeta6 integrin-induced, peripheral focal contacts associated with elaborate stress fibers. Mechanistically, this appears to be due to reduced FAK and Src and elevated RhoA and Rock activities.
View Article and Find Full Text PDFAt the surface of the skin, the epidermis serves as the armour for the body. Scientists are now closer than ever to understanding how the epidermis accomplishes this extraordinary feat, and is able to survive and replenish itself under the harshest conditions that face any tissue. By combining genetic engineering with cell-biological studies and with human genome data analyses, skin biologists are discovering the mechanisms that underlie the development and differentiation of the epidermis and hair follicles of the skin.
View Article and Find Full Text PDF