Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for therapies aimed at improving volitional muscle activation. Here we hypothesize that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby immediately potentiating motor output.
View Article and Find Full Text PDFCancer survival rates in prepubertal girls and young women have risen in recent decades due to increasingly efficient treatments. However, many such treatments are gonadotoxic, causing premature ovarian insufficiency, loss of fertility, and ovarian endocrine function. Implantation of donor ovarian tissue encapsulated in immune-isolating capsules is a promising method to restore physiological endocrine function without immunosuppression or risk of reintroducing cancer cells harbored by the tissue.
View Article and Find Full Text PDFCerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for new therapies aimed at improving volitional muscle activation. Here we hypothesized that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby potentiating motor output.
View Article and Find Full Text PDFGrowth factor (GF) delivery is a common strategy for spinal cord injury repair, however, GF degradation can impede long-term therapies. GF sequestration via heparin is known to protect bioactivity after delivery. We tested two heparin modifications, methacrylated heparin and thiolated heparin, and electrospun these with methacrylated hyaluronic acid (MeHA) to form HepMAHA and HepSHHA nanofibers.
View Article and Find Full Text PDF