Publications by authors named "Sridhar Chandrasekaran"

In this study, we utilized a navel hybrid material, prepared by fusing fluorescent Carbon Dots SyCDs, derived from syrup bottles, with curcumin. This innovative approach not only offers significant advancements in antimicrobial activity and bioimaging but also represents a stride in sustainable and eco-friendly nanotechnology. The core of our study is the development of an efficient, cost-effective, and environmentally conscious method for synthesizing SyCDs.

View Article and Find Full Text PDF

Printable electronics is emerging as one of the fast-growing engineering fields with a higher degree of customization and reliability. Ironically, sustainable printing technology is essential because of the minimal waste to the environment. To move forward, we need to harness the fabrication technology with the potential to support traditional process.

View Article and Find Full Text PDF

Surface oxidation employing neutral oxygen irradiation significantly improves the switching and synaptic performance of ZnO-based transparent memristor devices. The endurance of the as-irradiated device is increased by 100 times, and the operating current can be lowered by 10 times as compared with the as-deposited device. Moreover, the performance-enhanced device has an excellent analog behavior that can exhibit 3 bits per cell nonvolatile multistate characteristics and perform 15 stable epochs of synaptic operations with highly linear weight updates.

View Article and Find Full Text PDF

Artificial synapse having good linearity is crucial to achieve an efficient learning process in neuromorphic computing. It is found that the synaptic linearity can be enhanced by engineering the doping region across the switching layer. The nonlinearity of potentiation and depression of the pure device is 36% and 91%, respectively; meanwhile, the nonlinearity after doping can be suppressed to be 22% (potentiation) and 60% (depression).

View Article and Find Full Text PDF

The impact of peroxide surface treatment on the resistive switching characteristics of zinc peroxide (ZnO)-based programmable metallization cell (PMC) devices is investigated. The peroxide treatment results in a ZnO hexagonal to ZnO cubic phase transformation; however, an excessive treatment results in crystalline decomposition. The chemically synthesized ZnO promotes the occurrence of switching behavior in Cu/ZnO/ZnO/ITO with much lower operation current as compared to the Cu/ZnO/ITO (control device).

View Article and Find Full Text PDF

We explore the use of cubic-zinc peroxide (ZnO) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material.

View Article and Find Full Text PDF