Publications by authors named "Sridhar B Kadiyala"

Objective: C57BL/6J mice exposed to eight flurothyl-induced generalized clonic seizures exhibit a change in seizure phenotype following a 28-day incubation period and subsequent flurothyl rechallenge. Mice now develop a complex seizure semiology originating in the forebrain and propagating into the brainstem seizure network (a forebrain→brainstem seizure). In contrast, this phenotype change does not occur in seizure-sensitive DBA/2J mice.

View Article and Find Full Text PDF

Epilepsy has many causes and comorbidities affecting as many as 4% of people in their lifetime. Both idiopathic and symptomatic epilepsies are highly heritable, but genetic factors are difficult to characterize among humans due to complex disease etiologies. Rodent genetic studies have been critical to the discovery of seizure susceptibility loci, including mutations identified in both mouse and human cohorts.

View Article and Find Full Text PDF

Unlabelled: The occurrence of recurrent, unprovoked seizures is the hallmark of human epilepsy. Currently, only two-thirds of this patient population has adequate seizure control. New epilepsy models provide the potential for not only understanding the development of spontaneous seizures, but also for testing new strategies to treat this disorder.

View Article and Find Full Text PDF

Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge.

View Article and Find Full Text PDF

Identifying the genetic basis of epilepsy in humans is difficult due to its complexity, thereby underlying the need for preclinical models with specific aspects of seizure susceptibility that are tractable to genetic analyses. In the repeated-flurothyl model, mice are given 8 flurothyl-induced seizures, once per day (the induction phase), followed by a 28-day rest period (incubation phase) and final flurothyl challenge. This paradigm allows for the tracking of multiple phenotypes including: initial generalized seizure threshold, decreases in generalized seizure threshold with repeated flurothyl exposures, and changes in the complexity of seizures over time.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont7paod915hdgqnjf8qnaft00l9t220qb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once