Publications by authors named "SriDurgaDevi Kolla"

All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein.

View Article and Find Full Text PDF

Post-translational modification with ubiquitin is required for cell division, differentiation, and survival in all eukaryotes. As part of an intricate signaling code, ubiquitin is attached to its targets as single molecules or polymeric chains, with the distinct modifications encoding a wide range of outcomes. After early work focused on homotypic ubiquitin chains, such as the K48-linked polymers that drive proteasomal degradation, recent studies noted abundant conjugates that contained ubiquitin molecules modified on two or more sites.

View Article and Find Full Text PDF

Adolescence is a vulnerable period of breast development, and environmental chemical exposures that occur during this period can increase the risk of breast cancer in adulthood. Discussing breast health with adolescent girls can be difficult for several reasons. In this project, we worked to not only inform adolescent researchers about environmental risks for breast cancer but to also involve them in research studies.

View Article and Find Full Text PDF

Humans are exposed to estrogenic chemicals in food and food packaging, personal care products, and other industrial and consumer goods. Bisphenol A (BPA), a well-studied xenoestrogen, is known to alter development of estrogen-sensitive organs including the brain, reproductive tract, and mammary gland. Bisphenol S (BPS; 4,4'-sulfonyldiphenol), which has a similar chemical structure to BPA, is also used in many consumer products, but its effects on estrogen-sensitive organs in mammals has not been thoroughly examined.

View Article and Find Full Text PDF

The CD-1 mouse mammary gland is sexually dimorphic, with males lacking nipples. Recent studies have revealed that the underlying epithelium in the male mammary gland is sensitive to estrogenic environmental chemicals. In ongoing investigations, we observed asymmetric morphology in the left and right male mouse mammary glands.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) were used as flame-retardant additives starting 1965 and were recently withdrawn from commerce in North America and Europe. Approximately 1/5 of the total U.S.

View Article and Find Full Text PDF

Throughout life, mammary tissue is strongly influenced by hormones. Scientists have hypothesized that synthetic chemicals with hormonal activities could disrupt mammary gland development and contribute to breast diseases and dysfunction. Bisphenol S (BPS) is an estrogenic compound used in many consumer products.

View Article and Find Full Text PDF

Background: There are numerous examples of laboratory animals that were inadvertently exposed to endocrine disrupting chemicals (EDCs) during the process of conducting experiments. Controlling contaminations in the laboratory is challenging, especially when their source is unknown. Unfortunately, EDC contaminations can interfere with the interpretation of data during toxicological evaluations.

View Article and Find Full Text PDF