Publications by authors named "Sri Priya Ponnapalli"

Proteins perform many essential functions in biological systems and can be successfully developed as bio-therapeutics. It is invaluable to be able to predict their properties based on a proposed sequence and structure. In this study, we developed a novel generalizable deep learning framework, LM-GVP, composed of a protein Language Model (LM) and Graph Neural Network (GNN) to leverage information from both 1D amino acid sequences and 3D structures of proteins.

View Article and Find Full Text PDF

Modeling of genomic profiles from the Cancer Genome Atlas (TCGA) by using recently developed mathematical frameworks has associated a genome-wide pattern of DNA copy-number alterations with a shorter, roughly one-year, median survival time in glioblastoma (GBM) patients. Here, to experimentally test this relationship, we whole-genome sequenced DNA from tumor samples of patients. We show that the patients represent the U.

View Article and Find Full Text PDF

More than a quarter of lung, uterine, and ovarian adenocarcinoma (LUAD, USEC, and OV) tumors are resistant to platinum drugs. Only recently and only in OV, patterns of copy-number alterations that predict survival in response to platinum were discovered, and only by using the tensor GSVD to compare Agilent microarray platform-matched profiles of patient-matched normal and primary tumor DNA. Here, we use the GSVD to compare whole-genome sequencing (WGS) and Affymetrix microarray profiles of patient-matched normal and primary LUAD, USEC, and OV tumor DNA.

View Article and Find Full Text PDF

DNA alterations have been observed in astrocytoma for decades. A copy-number genotype predictive of a survival phenotype was only discovered by using the generalized singular value decomposition (GSVD) formulated as a comparative spectral decomposition. Here, we use the GSVD to compare whole-genome sequencing (WGS) profiles of patient-matched astrocytoma and normal DNA.

View Article and Find Full Text PDF

The number of high-dimensional datasets recording multiple aspects of a single phenomenon is increasing in many areas of science, accompanied by a need for mathematical frameworks that can compare multiple large-scale matrices with different row dimensions. The only such framework to date, the generalized singular value decomposition (GSVD), is limited to two matrices. We mathematically define a higher-order GSVD (HO GSVD) for N≥2 matrices D(i)∈R(m(i) × n), each with full column rank.

View Article and Find Full Text PDF