Publications by authors named "Sreenivasulu Yelam"

lines with loss-of-function mutation in () gene showed seed sterility with embryo sac cellularization defects. Examination of tissue-cleared mature ovules revealed irregularly positioned nuclei/embryos within the embryo sacs. Egg cell-specific marker (DD45) expression analysis confirmed the presence of multiple egg cells in the mutant embryo sacs.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how hydrogen peroxide (HO) acts both as a signaling molecule and a contributor to plant mechanical strength during salt stress by analyzing transgenic Arabidopsis thaliana plants overexpressing two specific genes from high-altitude plants.
  • The dual transgenic lines exhibited improved growth and biomass, as indicated by higher cellulose content compared to wild-type and single transgenic plants, suggesting a synergy between the two genes under stress conditions.
  • Gene expression analysis uncovered specific cellulose biosynthesis genes that were upregulated in transgenic plants, highlighting the potential for understanding and enhancing plant growth and cellulose production under challenging environmental conditions.
View Article and Find Full Text PDF

In plants, the role of TRAF-like proteins with meprin and the TRAF homology (MATH) domain is far from clear. In animals, these proteins serve as adapter molecules to mediate signal transduction from Tumor Necrosis Factor Receptor to downstream effector molecules. A seed-sterile mutant with a disrupted TRAF-like gene () exhibiting aberrant gametogenesis led us to investigate the developmental role of this gene in Arabidopsis ().

View Article and Find Full Text PDF

Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis () CPO-coding gene () adversely affects silique length, ovule number, and seed set.

View Article and Find Full Text PDF

The Arabidopsis thaliana promoter trap mutant Bitrap-112 expressing green fluorescent protein (GFP) gene in the ovules was found to carry transferred DNA (T-DNA) insertion at -309 position of the APETALA2 (AP2) gene. Bitrap-112 line did not show phenotype associated with the AP2 mutation, suggesting that T-DNA insertion did not interrupt the AP2 promoter. Further, head-to-head orientation of GFP and AP2 genes indicated that the AP2 promoter could be bidirectional.

View Article and Find Full Text PDF

Xyloglucan endo-transglycosylase/hydrolase ( Ph XET/H) regulates Podophyllum seed germination via GA mediated up-accumulation of Ph XET protein and subsequent endosperm weakening. Xyloglucan endo-transglycosylase/hydrolase (XET/H) belong to glycosyl hydrolase family 16, which play an important role in endosperm weakening and embryonic expansion during seed germination. Podophyllum hexandrum is a high altitude medicinal plant exploited for its etoposides which are potential anticancer compounds.

View Article and Find Full Text PDF

Podophyllum hexandrum Royle is an important high-altitude plant of Himalayas with immense medicinal value. Earlier, it was reported that the cell wall hydrolases were up accumulated during radicle protrusion step of Podophyllum seed germination. In the present study, Podophyllum seed Germination protein interaction Network (PGN) was constructed by using the differentially accumulated protein (DAP) data set of Podophyllum during the radicle protrusion step of seed germination, with reference to Arabidopsis protein-protein interaction network (AtPIN).

View Article and Find Full Text PDF
Article Synopsis
  • Abiotic stresses lead to an increase in reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), in plants, which is important for signaling adaptive responses to salt stress.* -
  • The study investigates the overexpression of PaSOD from Potentilla atrosanguinea and RaAPX from Rheum australe in Arabidopsis thaliana, which enhances lignin production and supports improved growth and biomass under salt stress conditions.* -
  • Findings suggest that the transgenic plants maintain optimal H2O2 levels through SOD and APX, which in turn activates lignin biosynthesis, providing mechanical strength and increasing salt tolerance compared to wild-type plants.*
View Article and Find Full Text PDF

In Dendrocalamus hamiltonii, conversion of vegetative meristem to a floral meristem was successfully achieved on flower induction medium. A total of 128 differentially expressed proteins were evidenced by 2DE in floral meristem protein profiles. Analysis of 103 proteins through PMF revealed change in abundance in the content of 79 proteins, disappearance and new appearance in the content of 7 and 17 proteins, respectively.

View Article and Find Full Text PDF

Antioxidant enzymes play a significant role in eliminating toxic levels of reactive oxygen species (ROS), generated during stress from living cells. In the present study, two different antioxidant enzymes namely copper-zinc superoxide dismutase derived from Potentilla astrisanguinea (PaSOD) and ascorbate peroxidase (RaAPX) from Rheum austral both of which are high altitude cold niche area plants of Himalaya were cloned and simultaneously over-expressed in Arabidopsis thaliana to alleviate cold stress. It was found that the transgenic plants over-expressing both the genes were more tolerant to cold stress than either of the single gene expressing transgenic plants during growth and development.

View Article and Find Full Text PDF

Podophyllum hexandrum is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. ß-1, 3-glucanase cDNA was cloned from the germinating seeds of Podophyllum (Ph-glucanase). Glucanases belong to pathogenesis related glycohydralase family of proteins, which also play an important role in endosperm weakening and testa rupture during seed germination.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) catalyzes the dismutation of superoxide radicals (O₂( ·-)) to molecular oxygen (O₂) and hydrogen peroxide (H₂O₂). Previously, we have identified and characterized a thermo-tolerant copper-zinc superoxide dismutase from Potentilla atrosanguinea (PaSOD), which retains its activity in the presence of NaCl. In the present study, we show that cotyledonary explants of PaSOD overexpressing transgenic Arabidopsis thaliana exhibit early callus induction and high shoot regenerative capacity than wild-type (WT) explants.

View Article and Find Full Text PDF

Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %).

View Article and Find Full Text PDF

Investigation of the transgenic Arabidopsis promoter trap line GFP-868 that showed GFP expression only in anthers revealed the T-DNA insertion at 461bp upstream to the hypothetical gene At4g10596 with the GFP reporter gene in head-to-head orientation to the At4g10596 gene. The expression of the At4g10596 gene in wild type and in GFP-868 plant homozygous for T-DNA insertion was comparable and found in all tissues tested, while the GFP expression was restricted to anthers of the GFP-868 plants suggesting that the 461bp fragment separating the two genes in the GFP-868 line is functioning as bi-directional promoter. This 461bp fragment was cloned upstream to the GUS gene in two orientations to test for bi-directional promoter activity.

View Article and Find Full Text PDF

Aconitum heterophyllum is a high altitude medicinal plant that has become endangered due to overexploitation for their aconitins. The most effective, conventional propagation method for any plant species is by seed. However, in Aconitum seed germination is erratic, and seedling survival is low.

View Article and Find Full Text PDF

Podophyllum hexandrum Royle (=Sinopodophyllum hexandrum) is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. An effective, conventional propagation method is by seed. However, seed germination is erratic, and seedling survival is low.

View Article and Find Full Text PDF

Copper (Cu), though an essential micronutrient for plants, poses toxicity at higher concentrations possibly by inducing oxidative stress. With the background that enzyme superoxide dismutase (SOD) ameliorates oxidative stress, the present work focused on understanding physiological and proteomic response of Arabidopsis seeds constitutively over-expressing copper-zinc SOD of Potentilla atrosanguinea (PaSOD) during germination in response to varied concentrations of copper sulphate (Cu stress). Transgenics showed higher germination percentage and required less "mean time to germination" under Cu-stress.

View Article and Find Full Text PDF

The present study demonstrated that over-expression of copper-zinc superoxide dismutase (Cu/Zn-SOD), an important enzyme scavenging reactive oxygen species, improved vascular structures through lignification and imparted tolerance to salt stress (NaCl) in Arabidopsis thaliana (Arabidopsis; accession Col-0). Transgenic plants of Arabidopsis were developed by over-expressing cytosolic Cu/Zn-SOD from Potentilla atrosanguinea under CaMV35S promoter via Agrobacterium tumefaciens mediated transformation. Homozygous T(3) lines were analyzed for morphological, anatomical and molecular differences in response to salt stress.

View Article and Find Full Text PDF