Alternative energy sources, such as biodiesel, play a vital role in environmental protection. Waste cooking oil (WCO) biodiesel has promising applications in compression ignition engines. A major problem regarding biodiesel implementation is the deterioration and materials incompatibility of existing fuel system components with biodiesel.
View Article and Find Full Text PDFACS Omega
February 2024
Low-temperature combustion paired with the use of carbon-free ammonia and carbon-neutral biofuels is a novel approach for improving performance, reducing greenhouse gases, and reducing regulated emissions. Reactivity-controlled compression ignition (RCCI), a low-temperature combustion technology, dramatically reduces NOx and smoke emissions compared to traditional engines. Ammonia can be projected as a good transit fuel in the journey toward achieving net zero emissions and cleaner energy.
View Article and Find Full Text PDFThis study investigates the feasibility of hydrogen addition to achieve lower emissions and higher thermal efficiency in an ammonia-biodiesel-fueled reactivity-controlled compression ignition (RCCI) engine. A single-cylinder light-duty water-cooled compression ignition (CI) engine was adapted to run in RCCI combustion with port-injected ammonia and hydrogen as low reactive fuel (LRF) and direct-injected algal biodiesel as high reactive fuel (HRF). In our earlier study, the ammonia substitution ratio (ASR) was optimized as 40%.
View Article and Find Full Text PDFThe rapid depletion of crude oil and environmental degradation necessitate the search for alternative fuel sources for internal combustion engines. Biodiesel is a promising alternative fuel for compression ignition (CI) engines due to its heat content and combustion properties. Biodiesel blends are used in various vehicles and equipment, such as cars, trucks, buses, off-road vehicles, and oil furnaces.
View Article and Find Full Text PDFThe ongoing depletion of the world's fossil fuel sources and environmental damage has compelled the quest for alternative energy. Excellent characteristics of biodiesel include its renewable nature, safety, absence of sulfur, environmental advantages, and biodegradability, which can eradicate the above problems. In this study, algal oil was characterized to obtain the fatty acid profile, and the free fatty acid value of algal oil suggested a two-step process of esterification and transesterification for efficient biodiesel production.
View Article and Find Full Text PDFACS Omega
February 2023
Fossil fuel depletion and environmental pollution are paramount problems the world faces. Despite several measures, the transportation industry is still battling to manage these issues. A combined approach of fuel modification for low-temperature combustion with combustion enhancers could offer a breakthrough.
View Article and Find Full Text PDFACS Omega
December 2022
In this experimental investigation, Kariba weed biodiesel (KSB) blended with -pentane has been tested in conventional and ceramic-coated thermal barrier engines, and the results have been compiled and presented. A single-cylinder, four-stroke, direct injection diesel engine has been used as the test engine with eddy current dynamometer loading as used in the experimental setup. The tests were repeated in various ambient conditions to get an optimal value.
View Article and Find Full Text PDF