Publications by authors named "Sreemanth M Uppuluri"

We report results of parallel optical nanolithography using nanoscale bowtie aperture array. These nanoscale bowtie aperture arrays are used to focus a laser beam into multiple nanoscale light spots for parallel nano-lithography. Our work employed a frequency-tripled diode-pumped solid state (DPSS) laser (lambda = 355 nm) and Shipley S1805 photoresist.

View Article and Find Full Text PDF

Ridge nanoscale aperture antennas have been shown to be a high transmission nanoscale light source. They provide a small, polarization-dependent near-field optical spot with much higher transmission efficiency than circularly-shaped apertures with similar field confinement. This provides significant motivations to understand the electromagnetic fields in the immediate proximity to the apertures.

View Article and Find Full Text PDF

Nanoscale ridge aperture antennas have been shown to have high transmission efficiency and confined nanoscale radiation in the near field region compared with regularly-shaped apertures. The radiation enhancement is attributed to the fundamental electric-magnetic field propagating in the TE(10) mode concentrated in the gap between the ridges. This paper reports experimental demonstration of field enhancement using such ridge antenna apertures in a bowtie shape for the manufacture of nanometer size structures using an NSOM (near field scanning optical microscopy) probe integrated with nanoscale bowtie aperture.

View Article and Find Full Text PDF

C-shaped ridge apertures are used in contact nanolithography to achieve nanometer scale resolution. Lithography results demonstrated that holes as small as 60 nm can be produced in the photoresist by illuminating the apertures with a 355 nm laser beam. Experiments are also performed using comparable square and rectangular apertures.

View Article and Find Full Text PDF

We demonstrate that bowtie apertures can be used for contact lithography to achieve nanometer scale resolution. The bowtie apertures with a 30 nm gap size are fabricated in aluminum thin films coated on quartz substrates. Lithography results show that holes of sub-50-nm dimensions can be produced in photoresist by illuminating the apertures with a 355 nm laser beam polarized in the direction across the gap.

View Article and Find Full Text PDF