Expert Opin Ther Targets
December 2024
Introduction: () is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research.
Areas Covered: Here, we summarize 's correlation with poor patient outcomes across numerous cancers and the mechanisms governing 's activity and processing.
Background: Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms.
Methods: Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA).
Wnt signaling is a major driver of stemness and chemoresistance in ovarian cancer, yet the genetic drivers that stimulate its expression remain largely unknown. Unlike other cancers, mutations in the Wnt pathway are not reported in high-grade serous ovarian cancer (HGSOC). Hence, a key challenge that must be addressed to develop effective targeted therapies is to identify nonmutational drivers of Wnt activation.
View Article and Find Full Text PDFGenomic instability (GI) predisposes cells to malignant transformation, however the molecular mechanisms that allow for the propagation of cells with a high degree of genomic instability remain unclear. Here we report that miR-181a is able to transform fallopian tube secretory epithelial cells through the inhibition of RB1 and stimulator-of-interferon-genes (STING) to propagate cells with a high degree of GI. MiR-181a targeting of RB1 leads to profound nuclear defects and GI generating aberrant cytoplasmic DNA, however simultaneous miR-181a mediated inhibition of STING allows cells to bypass interferon mediated cell death.
View Article and Find Full Text PDFNF-κB is a pro-inflammatory transcription factor that critically regulates immune responses and other distinct cellular pathways. However, many NF-κB-mediated pathways for cell survival and apoptosis signaling in cancer remain to be elucidated. Cell cycle and apoptosis regulatory protein 1 (CARP-1 or CCAR1) is a perinuclear phosphoprotein that regulates signaling induced by anticancer chemotherapy and growth factors.
View Article and Find Full Text PDFCell Cycle and Apoptosis Regulatory Protein (CARP-1/CCAR1) is a peri-nuclear phosphoprotein that regulates apoptosis via chemotherapeutic Adriamycin (doxorubicin) and a novel class of CARP-1 functional mimetic (CFM) compounds. Although Adriamycin causes DNA damage, data from Comet assays revealed that CFM-4.16 also induced DNA damage.
View Article and Find Full Text PDFNon-small cell lung cancers (NSCLC) account for 85% of all lung cancers, and the epidermal growth factor receptor (EGFR) is highly expressed or activated in many NSCLC that permit use of EGFR tyrosine kinase inhibitors (TKIs) as frontline therapies. Resistance to EGFR TKIs eventually develops that necessitates development of improved and effective therapeutics. CARP-1/CCAR1 is an effector of apoptosis by Doxorubicin, Etoposide, or Gefitinib, while CARP-1 functional mimetic (CFM) compounds bind with CARP-1, and stimulate CARP-1 expression and apoptosis.
View Article and Find Full Text PDFCurrent treatments for Renal Cell Carcinoma (RCC) include a combination of surgery, targeted therapy, and immunotherapy. Emergence of resistant RCCs contributes to failure of drugs and poor prognosis, and thus warrants development of new and improved treatment options for RCCs. Here we generated and characterized RCC cells that are resistant to Everolimus, a frontline mToR-targeted therapy, and tested whether our novel class of CARP-1 functional mimetic (CFM) compounds inhibit parental and Everolimus-resistant RCC cells.
View Article and Find Full Text PDFDoxorubicin and Cisplatin are the frontline therapeutics for treatment of the triple negative breast cancers (TNBCs). Emergence of drug-resistance often contributes to failure of drugs and poor prognosis, and thus necessitates development of new and improved modalities to treat TNBCs. We generated and characterized chemotherapy-resistant TNBC cells following their culture in chronic presence of Doxorubicin or Cisplatin, and tested whether their viabilities were inhibited by a novel class of CARP- 1 functional mimetic (CFM) compounds.
View Article and Find Full Text PDFThe extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer's disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated.
View Article and Find Full Text PDFDYNLT1 is a member of a gene family identified within the t-complex of the mouse, which has been linked with male germ cell development and function in the mouse and the fly. Though defects in the expression of this gene are associated with male sterility in both these models, there has been no study examining its association with spermatogenic defects in human males. In this study, we evaluated the levels of DYNLT1 and its expression product in the germ cells of fertile human males and males suffering from spermatogenic defects.
View Article and Find Full Text PDFChlorotoxin is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion) venom, which has been shown to inhibit low-conductance chloride channels in colonic epithelial cells. Chlorotoxin also binds to matrix metalloproteinase-2 and other proteins on glioma cell surfaces. Glioma cells are considered to require the activation of matrix metalloproteinase-2 during invasion and migration.
View Article and Find Full Text PDFWe recently documented the identification of a 26.5 kDa protein named BmNox in the gut fluid of Nistari strain of Bombyx mori, which possessed antiviral activity against BmNPV in vitro. In this report, we report the characterization of the full-length gene encoding BmNOX and the levels of expression of this gene in select tissues of silkworm larvae from a BmNPV-susceptible and a BmNPV-resistant strain to the defense capability in Bombyx mori larvae challenged with BmNPV.
View Article and Find Full Text PDF