The somatostatin (SST) receptor family controls pituitary hormone secretion, but the distribution and specific roles of these receptors on the excitability and voltage-gated calcium signaling of hormone producing pituitary cells have not been fully characterized. Here we show that the rat pituitary gland expressed Sstr1, Sstr2, Sstr3, and Sstr5 receptor genes in a cell type-specific manner: Sstr1 and Sstr2 in thyrotrophs, Sstr3 in gonadotrophs and lactotrophs, Sstr2, Sstr3, and Sstr5 in somatotrophs, and none in corticotrophs and melanotrophs. Most gonadotrophs and thyrotrophs spontaneously fired high-amplitude single action potentials, which were silenced by SST without affecting intracellular calcium concentrations.
View Article and Find Full Text PDFThe neuroendocrine marker genes Ptprn and Ptprn2 encode protein tyrosine phosphatase receptors N and N2, 2 members of protein tyrosine phosphatase receptors void of enzymatic activity, and whose function and mechanism of action have not been elucidated. To explore the role(s) of Ptprn and Ptprn2 on the hypothalamic-pituitary-adrenal axis, we used mice in which both genes were knocked out (DKO). The focus in this study was on corticotrophs and melanotrophs from the anterior and intermediate lobes of the pituitary gland, respectively.
View Article and Find Full Text PDFPostnatal development of functional pituitary gonadotrophs is necessary for maturation of the hypothalamic-pituitary-gonadal axis, puberty, and reproduction. Here we examined the role of PI4-kinase A, which catalyzes the biosynthesis of PI4P in mouse reproduction by knocking out this enzyme in cells expressing the gonadotropin-releasing hormone (GnRH) receptor. Knockout (KO) mice were infertile, reflecting underdeveloped gonads and reproductive tracts and lack of puberty.
View Article and Find Full Text PDFSimultaneous knockout of the neuroendocrine marker genes Ptprn and Ptprn2, which encode the protein tyrosine phosphatase receptors N and N2, causes infertility in female mice while males are fertile. To elucidate the mechanism of the sex-specific roles of Ptprn and Ptprn2 in mouse reproduction, we analyzed the effects of their double knockout (DKO) on the hypothalamic-pituitary-gonadal axis. In DKO females, delayed puberty and lack of ovulation were observed, complemented by changes in ovarian gene expression and steroidogenesis.
View Article and Find Full Text PDFThe role of calcium, but not of other intracellular signaling molecules, in the release of pituitary hormones by exocytosis is well established. Here, we analyzed the contribution of phosphatidylinositol kinases (PIKs) to calcium-driven prolactin (PRL) release in pituitary lactotrophs: PI4Ks - which control PI4P production, PIP5Ks - which synthesize PI(4, 5)P2 by phosphorylating the D-5 position of the inositol ring of PI4P, and PI3KCs - which phosphorylate PI(4, 5)P to generate PI(3, 4, 5)P. We used common and PIK-specific inhibitors to evaluate the strength of calcium-secretion coupling in rat lactotrophs.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
January 2021
Since mitochondria play an essential role in the testosterone biosynthesis, serve as power centers and are a source of oxidative stress, a possible mitochondrial dysfunction could be connected with decreased activity of Leydig cells and lowered testosterone production during aging. Here we chronologically analyzed age-related alterations of mitochondrial function in Leydig cells correlated by the progressive rise of cGMP signaling and with respect to testosterone synthesis. To target cGMP signaling in Leydig cells, acute or long-term in vivo or ex vivo treatments with sildenafil (phosphodiesterase 5 [PDE5] inhibitor) were performed.
View Article and Find Full Text PDFNO-cGMP signaling pathway has been implicated in reduction of testicular steroidogenesis during aging. Here we analyzed the effect of PDE5 inhibition on old testicular phenotype formation. The old phenotype exhibited low testosterone and increased nitrite levels in circulation, increased cGMP accumulation in testicular interstitial fluid (TIF), progressive atrophy of testicular seminiferous tubules and enlargement of interstitial area followed by rise in blood vessel density and slight increase in the number of Leydig cells and macrophages.
View Article and Find Full Text PDFThe Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion.
View Article and Find Full Text PDFAlthough age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion.
View Article and Find Full Text PDFMelatonin actions on oscillators in reproductive organs are poorly understood. Here we analyzed melatonin effects on rhythmic expression of clock and steroidogenesis-related genes in adult rat Leydig cells (LCs). The effect of melatonin was tested both in vivo using pinealectomized and melatonin-substituted rats and in vitro on isolated LCs.
View Article and Find Full Text PDFThe aim of the present study was to define the role of testicular α1-adrenergic receptors (α1-ADRs) in stress-triggered adaptation of testosterone-producing Leydig cells of adult rats. Results showed that in vivo blockade of testicular α1-ADRs prevented partial recovery of circulating androgen levels registered after 10× repeated immobilization stress (10 × IMO). Moreover, α1-ADR-blockade diminished 10 × IMO-triggered recovery of Leydig cell androgen production, and abolished mitochondrial membrane potential recovery.
View Article and Find Full Text PDFThis study systematically evaluates the effects of androgen receptor (AR) blockade on molecular events in Leydig cells. Results showed that intramuscular administration of testosterone-enanthate, at clinically relevant dose, decreased testosterone in interstitial fluid and Leydig cells from adult rats. AR-blocker (Androcur) prevented this effect and testosterone-reduced Leydig cells steroidogenic capacity/activity.
View Article and Find Full Text PDFThe molecular mechanism of stress-associated reproductive dysfunction is complex and largely unknown. This study was designed to systematically analyze molecular effects of systemic in vivo blockade of α1-adrenergic receptors (α1-ADRs) on stress-induced disturbance of cAMP/cGMP signaling in testosterone-producing Leydig cells using the following parameters (i) level of circulating stress hormones, LH and testosterone; (ii) level of main molecular markers of Leydig cell functionality (testosterone, Insl3, cAMP); (iii) expression of cAMP signaling (cAMP 'producers'/'effectors'/'removers') and (iv) expression of NO-cGMP signaling (NO-cGMP 'producers'/'effectors'/'removers'). The results showed that oral administration of α1-ADR blocker before stress increased cGMP and diminished stress-reduced cAMP production in Leydig cells.
View Article and Find Full Text PDFThe molecular mechanism of the aging-associated dysfunction of Leydig cells (LCs) is complex and poorly understood. In this study, we analyzed the contribution of nitric oxide (NO) and cGMP signaling to the age-dependent decline in LC function. Significant (>50%) decreases in serum, intratesticular, and LC androgens in aging rats (15-24 months) were accompanied by a proportional increase in NO production, an up-regulation of cGMP levels, and the expression of soluble guanylyl cyclase-1B and protein kinase G1 in LCs.
View Article and Find Full Text PDFThis study was designed to systematically analyze and evaluate the effects of in vivo blockade of α₁-adrenergic receptors (α₁-ADRs) on the stress-induced disturbance of steroidogenic machinery in Leydig cells. Parameters followed 1) steroidogenic enzymes/proteins, transcription factors, and cAMP/testosterone production; 2) the main hallmarks of stress (epinephrine, glucocorticoids); and 3) transcription profiles of ADRs and oxidases with high affinity to inactivate glucocorticoids. Results showed that sustained blockade of α₁-ADRs prevented stress-induced 1) decrease of the transcripts/proteins for main steroidogenic CYPs (CYP11A1, CYP17A1); 2) decrease of Scarb1 and Hsd3b1 transcripts; 3) decrease of transcript for Nur77, one of the main activator of the steroidogenic expression; and 4) increase of Dax1 and Arr19, the main steroidogenic repressors in Leydig cells.
View Article and Find Full Text PDFThe stress-induced initiation of proapoptotic signaling in Leydig cells is relatively well defined, but the duration of this signaling and the mechanism(s) involved in opposing the stress responses have not been addressed. In this study, immobilization stress (IMO) was applied for 2 h daily, and animals were euthanized immediately after the first (IMO1), second (IMO2), and 10th (IMO10) sessions. In IMO1 and IMO2 rats, serum corticosterone and adrenaline were elevated, whereas serum androgens and mRNA transcription of insulin-like factor-3 in Leydig cells were inhibited.
View Article and Find Full Text PDF