Publications by authors named "Sravanthi Gundavarapu"

Rationale: Smoking during pregnancy increases the risk of bronchopulmonary dysplasia (BPD) and, in mice, gestational exposure to sidestream cigarette smoke (SS) induces BPD-like condition characterized by alveolar simplification, impaired angiogenesis, and suppressed surfactant protein production. Normal fetal development occurs in a hypoxic environment and nicotinic acetylcholine receptors (nAChRs) regulate the hypoxia-inducible factor (HIF)-1α that controls apoptosis and angiogenesis. To understand SS-induced BPD, we hypothesized that gestational SS affected alveolar development through HIF-1α.

View Article and Find Full Text PDF

Sarin is an organophosphate nerve agent that is among the most lethal chemical toxins known to mankind. Because of its vaporization properties and ease and low cost of production, sarin is the nerve agent with a strong potential for use by terrorists and rouge nations. The primary route of sarin exposure is through inhalation and, depending on the dose, sarin leads to acute respiratory failure and death.

View Article and Find Full Text PDF

Lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and lung infections are major causes of morbidity and mortality among HIV-infected patients even in the era of antiretroviral therapy (ART). Many of these diseases are strongly associated with smoking and smoking is more common among HIV-infected than uninfected people; however, HIV is an independent risk factor for chronic bronchitis, COPD, and asthma. The mechanism by which HIV promotes these diseases is unclear.

View Article and Find Full Text PDF

Background: Cigarette smoke (CS) exposure during gestation may increase the risk of bronchopulmonary dysplasia (BPD)-a developmental lung condition primarily seen in neonates that is characterized by hypoalveolarization, decreased angiogenesis, and diminished surfactant protein production and may increase the risk of chronic obstructive pulmonary disease.

Objective: We investigated whether gestational exposure to secondhand CS (SS) induced BPD and sought to ascertain the role of nicotinic acetylcholine receptors (nAChRs) in this response.

Methods: We exposed BALB/c and C57BL/6 mice to filtered air (control) or SS throughout the gestation period or postnatally up to 10 weeks.

View Article and Find Full Text PDF

Background: Airway mucus hypersecretion is a key pathophysiologic feature in a number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear.

Objectives: We sought to characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus.

View Article and Find Full Text PDF

Sulfur mustard (SM) is a highly toxic chemical warfare agent that remains a threat to human health. The immediate symptoms of pulmonary distress may develop into chronic lung injury characterized by progressive lung fibrosis, the major cause of morbidity among the surviving SM victims. Although SM has been intensely investigated, little is known about the mechanism(s) by which SM induces chronic lung pathology.

View Article and Find Full Text PDF

Parental, particularly maternal, smoking increases the risk for childhood allergic asthma and infection. Similarly, in a murine allergic asthma model, prenatal plus early postnatal exposure to secondhand cigarette smoke (SS) exacerbates airways hyperreactivity and Th2 responses in the lung. However, the mechanism and contribution of prenatal versus early postnatal SS exposure on allergic asthma remain unresolved.

View Article and Find Full Text PDF

Although a number of inflammatory cytokines are increased during sepsis, the clinical trials aimed at down-regulating these mediators have not improved the outcome. These paradoxical results are attributed to loss of the "tolerance" phase that normally follows the proinflammatory response. Chronic nicotine (NT) suppresses both adaptive and innate immune responses, and the effects are partly mediated by the nicotinic acetylcholine receptors in the brain; however, the mechanism of neuroimmune communication is not clear.

View Article and Find Full Text PDF

Smokers are less likely to develop some inflammatory and allergic diseases. In Brown-Norway rats, nicotine inhibits several parameters of allergic asthma, including the production of Th2 cytokines and the cysteinyl leukotriene LTC(4). Cysteinyl leukotrienes are primarily produced by mast cells, and these cells play a central role in allergic asthma.

View Article and Find Full Text PDF

Cell-based therapy in adult lung injury models is associated with highly variable donor cell engraftment and epithelial reconstitution. The role of marrow-derived cell therapy in neonatal lung injury is largely unknown. In this study, we determined the fate and effects of adult bone marrow cells in a model of neonatal lung injury.

View Article and Find Full Text PDF

The functional significance of the Fas/Fas-ligand (FasL) system in hyperoxia-induced lung injury and alveolar disruption in newborn lungs in vivo remains undetermined. To assess the role of the Fas/FasL system, we compared the effects of hyperoxia (95% O2 from birth to Postnatal Day [P]7) in Fas-deficient lpr mice and wild-type mice. Alveolar disruption was more severe in hyperoxic lpr mice than in wild-type mice.

View Article and Find Full Text PDF

Premature infants are at risk for bronchopulmonary dysplasia, a complex condition characterized by impaired alveolar development and increased alveolar epithelial apoptosis. The functional involvement of pulmonary apoptosis in bronchopulmonary dysplasia- associated alveolar disruption remains undetermined. The aims of this study were to generate conditional lung-specific Fas-ligand (FasL) transgenic mice and to determine the effects of FasL-induced respiratory epithelial apoptosis on alveolar remodeling in postcanalicular lungs.

View Article and Find Full Text PDF

Rationale: Preterm infants exposed to mechanical ventilation and oxygen are at risk for bronchopulmonary dysplasia (BPD), a multifactorial chronic lung disorder characterized by arrested alveolar development. Studies have described disruption of microvascular development in BPD, characterized by primitive angioarchitectural patterns reminiscent of the canalicular/saccular stages of lung development. The molecular regulation of this BPD-associated dysangiogenesis remains undetermined.

View Article and Find Full Text PDF