Publications by authors named "Sravani Pulya"

HDAC3 modulation shows promise for breast cancer, including triple-negative cases. Novel -hydrazide-based HDAC3 inhibitors were designed and synthesized. Lead compound exhibited potent HDAC3 inhibition (IC = 14 nM) with at least 121-fold selectivity.

View Article and Find Full Text PDF

HDAC8 catalyzes the deacetylation of both histones and nonhistone proteins. The abnormal expression of HDAC8 is associated with various pathological conditions causing cancer and other diseases like myopathies, Cornelia de Lange syndrome, renal fibrosis, and viral and parasitic infections. The substrates of HDAC8 are involved in diverse molecular mechanisms of cancer such as cell proliferation, invasion, metastasis and drug resistance.

View Article and Find Full Text PDF

A promising hydrazide based small molecule lead as a potent and selective histone deacetylase 3 (HDAC3) inhibitor has been developed from a small series of synthesized novel chemical entities. The lead compound (4e) displayed high HDAC3 inhibitory potency (IC = 15.41 nM) and a minimum of 18-fold selectivity over other HDAC isoforms.

View Article and Find Full Text PDF

The classification of bisphenol A (BPA) as an industrial endocrine disruptor has led to a ban of this ubiquitous critical starting material from food and medical applications. Thus, scientists worldwide are researching to develop non-ER binding starting compounds to fulfill unmet market needs. In line with this trending research topic, the current paper highlights the development of tetrazole derivatives bearing a bisphenol structure (TbB) as a novel weak binder or potential inactive to the estrogen receptor (ER) and androgen receptor (AR).

View Article and Find Full Text PDF

Literature reports suggest spirochromanone derivatives exhibit anticancer activity. The authors designed and synthesized 18 spirochromanone derivatives (). The compounds were characterized and evaluated for anticancer activity against human breast cancer (MCF-7) and murine melanoma (B16F10) cell lines.

View Article and Find Full Text PDF

Histone deacetylase 3 (HDAC3) is one of the most promising targets to develop anticancer therapeutics. In continuation of our quest for selective HDAC3 inhibitors, a series of small molecules having o-hydroxy benzamide as the novel zinc binding group (ZBG) has been introduced for the first time that can be able to produce good HDAC3-selectivity over other HDACs. The most promising HDAC3 inhibitors, 11a and 12b, displayed promising in vitro anticancer activities with less toxicity to normal kidney cells.

View Article and Find Full Text PDF

A series of novel linker-less benzamides with different aryl and heteroaryl cap groups have been designed, synthesized, and screened as potent histone deacetylase (HDAC) inhibitors with promising anticancer activity. Two lead compounds 5e and 5f were found as potent and highly selective HDAC3 inhibitors over other Class-I HDACs and HDAC6. Compound 5e bearing a 6-quinolinyl moiety as the cap group was found to be a highly potent HDAC3 inhibitor (IC = 560 nM) and displayed 46-fold selectivity for HDAC3 over HDAC2, and 33-fold selectivity for HDAC3 over HDAC1.

View Article and Find Full Text PDF

A series of thirty-one novel 7-(5-((amino)-methyl)-thiophen-2-yl)-spiro-[chroman-2,4'-piperidin]-4-one hydrochloride analogues (Cst 1 - 31) have been designed, synthesized and characterized by H NMR, C NMR and MS spectral analysis. Here, we evaluated the anticancer potential and biological results of low-molecular-weight bridgehead oxygen and nitrogen-containing spirochromanones on proliferation and apoptosis of the human breast cancer cell line (MCF-7) and Murine melanoma (B16F10). The anticancer activity ranged from 2.

View Article and Find Full Text PDF
Article Synopsis
  • HDAC3 plays a crucial role in regulating genes related to long-term memory, and a new inhibitor called PT3 has been identified that can enhance memory in mice.
  • PT3 is highly selective for HDAC3 and effectively penetrates the blood-brain barrier, leading to significant memory improvement in a novel object recognition test.
  • The treatment with PT3 results in increased H3K9 acetylation and upregulation of memory-related genes in the hippocampus, suggesting its potential as a therapeutic option for age-related memory decline and conditions like Alzheimer's disease.
View Article and Find Full Text PDF

HDAC6, a class IIB HDAC isoenzyme, stands unique in its structural and physiological functions. Besides histone modification, largely due to its cytoplasmic localization, HDAC6 also targets several non-histone proteins including Hsp90, α-tubulin, cortactin, HSF1, etc. Thus, it is one of the key regulators of different physiological and pathological disease conditions.

View Article and Find Full Text PDF

A series of thirty one novel 2-(((1-(substituted phenyl)-1H-1,2,3-triazol-4-yl)methoxy)carbonyl)-3-methylquinoxaline-1,4-dioxide (7a-l), 3-(((1-(substituted phenyl)-1H-1,2,3-triazol-4-yl)methoxy)carbonyl)-6-chloro-2-methylquinoxaline-1,4-dioxide (8a-l) and 2-(((1-(substituted phenyl)-1H-1,2,3-triazol-4-yl)methoxy)carbonyl)-6,7-dichloro-3-methylquinoxaline-1,4-dioxide (9a-g) analogues were synthesized, characterized using various analytical techniques and single crystal was developed for the compounds 8 g and 9f. Synthesized compounds were evaluated for in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain and two clinical isolates Spec. 210 and Spec.

View Article and Find Full Text PDF

Human carbonic anhydrase-II (hCA-II) is the most dominant physiologic isoform amongst the sixteen reported hCA isoforms. Because of its high availability in the different anatomical, and cellular sites of the eye like retina and lens, it plays a more prominent role in the regulation of intraocular pressure than the other twelve catalytically active hCA isoforms. This isoform is also located in the brain, kidney, gastric mucosa, osteoclasts, RBCs, skeletal muscle, testes, pancreas, lungs, etc.

View Article and Find Full Text PDF

Bacteria regulate their phenotype, growth and population a signalling pathway known as quorum sensing. In this process, bacteria produce signalling molecules (autoinducers) to recognize their population density. Inhibiting this quorum sensing signalling pathway is one of the potential methods to treat bacterial infection.

View Article and Find Full Text PDF