A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition.
View Article and Find Full Text PDFAldo-keto reductase 1C3 (AKR1C3) is a protein upregulated in prostate cancer, hematological malignancies, and other cancers where it contributes to proliferation and chemotherapeutic resistance. Androgen receptor splice variant 7 (ARv7) is the most common mutation of the AR receptor that confers resistance to clinical androgen receptor signalling inhibitors in castration-resistant prostate cancer. AKR1C3 interacts with ARv7 promoting stabilization.
View Article and Find Full Text PDFAldo-keto reductase 1C3 (AKR1C3) is overexpressed in castration-resistant prostate cancer where it acts to drive proliferation and aggressiveness by producing androgens. The reductive action of the enzyme leads to chemoresistance development against various clinical antineoplastics across a range of cancers. Herein, we report the continued optimization of selective AKR1C3 inhibitors and the identification of , a potent AKR1C3 inhibitor (IC = 51 nM) with >1216-fold selectivity for AKR1C3 over closely related isoforms.
View Article and Find Full Text PDFInhibition of specific carbonic anhydrase (CA) enzymes is a validated strategy for the development of agents to target cancer. The CA isoforms IX and XII are overexpressed in various human solid tumors wherein they play a critical role in regulating extracellular tumor acidification, proliferation, and progression. A series of novel sulfonamides based on the coumarin scaffold were designed, synthesized and characterized as potent and selective CA inhibitors.
View Article and Find Full Text PDFAngiogenesis inhibitors are a critical pharmacological tool for the treatment of solid tumors. Suppressing vascular permeability leads to inhibition of tumor growth, invasion, and metastatic potential by blocking the supply of oxygen and nutrients. Disruption of the vascular endothelial growth factor (VEGF) signaling pathway is a validated target for the design of antiangiogenic agents.
View Article and Find Full Text PDFSynthesis of highly strained fused substituted dihydrobenzopyran cyclopropyl lactones derived from coumarin carboxylates are reported. The substrate scope tolerates a variety of 6- and 8-substituents on the coumarin ring. Substitution at the 5- or 7-position is resistant to tricyclic lactone formation except with 7-methyl substitution.
View Article and Find Full Text PDFA series of nitric oxide (NO) donor furoxan conjugates of N, N-dialkylcarboxy coumarins have been synthesized as potential anticancer agents. The synthesized compounds have been tested for their in vitro antiproliferative activities on various cancer and noncancerous cell lines. The candidate derivatives exhibit selectivity towards cancer cells with excellent activities in low nM to µM concentrations.
View Article and Find Full Text PDFHuman aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g.
View Article and Find Full Text PDFA novel nitrogen mustard CBISC has been synthesized and evaluated as an anticancer agent. CBISC has been shown to exhibit enhanced cell proliferation inhibition properties against mutant p53 cell lines colorectal cancer WiDr, pancreatic cancer (MIAPaCa-2 and PANC-1), and triple negative breast cancer (MDA-MB-231 and MDA-MB-468). In vitro mechanism of action studies revealed perturbations in the p53 pathway and increased cell death as evidenced by western blotting, immunofluorescent microscopy and MTT assay.
View Article and Find Full Text PDFNovel N-phenylindazole based diarylureas have been designed, synthesized and evaluated as potential anticancer agents. In vitro cell viability studies of these derivatives illustrate good potency with IC values in the range of 0.4-50 μM in several cancer cell lines including murine metastatic breast cancer 4T1, murine glioblastoma GL261, human triple negative breast cancer MDA-MB-231, human pancreatic cancer MIAPaCa-2, and human colorectal cancer cell line WiDr.
View Article and Find Full Text PDFArylphosphonium-benzoxaborole conjugates have been synthesized as potential mitochondria targeting anticancer agents. The synthesized compounds have been tested for their effects on cell viability in various solid tumor cell lines including breast cancer 4T1 and MCF-7, pancreatic cancer MIAPaCa-2 and colorectal adenocarcinoma WiDr. Compound 6c is designated as a lead compound for further studies due to its enhanced effects on cell viability in the above-mentioned cell lines.
View Article and Find Full Text PDFMolecules
May 2020
Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs.
View Article and Find Full Text PDFNovel silyl cyanocinnamic acid derivatives have been synthesized and evaluated as potential anticancer agents. In vitro studies reveal that lead derivatives 2a and 2b have enhanced cancer cell proliferation inhibition properties when compared to the parent monocarboxylate transporter (MCT) inhibitor cyano-hydroxycinnamic acid (CHC). Further, candidate compounds exhibit several-fold more potent MCT1 inhibition properties as determined by lactate-uptake studies, and these studies are supported by MCT homology modeling and computational inhibitor-docking studies.
View Article and Find Full Text PDFPotent and dual monocarboxylate transporter (MCT) 1 and 4 inhibitors have been developed for the first time as potential anticancer agents based on α-cyanocinnamic acid structural template. Candidate inhibitors 1-9 have been evaluated for cell proliferation against MCT1 and MCT4 expressing cancer cell lines. Potential MCT1 and MCT4 binding interactions of the lead compound 9 have been studied through homology modeling and molecular docking prediction.
View Article and Find Full Text PDFMonocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumor development and progression. Their expression levels are related to clinical disease prognosis. Accordingly, both MCTs are promising drug targets for treatment of a variety of human cancers.
View Article and Find Full Text PDFAllylic acetates derived from Baylis-Hillman reaction undergo efficient nucleophilic isomerization with imidazoles and triazoles to provide imidazolylmethyl and triazolylmethyl cinnamates stereoselectively. Antifungal evaluation of these derivatives against exhibits good minimum inhibitory concentration values. These compounds exhibit low toxicity in proliferating MCF-7 breast cancer cell line.
View Article and Find Full Text PDFThe reaction of carboxylic acids with Baylis-Hillman reaction derived α-bromomethyl acrylic esters readily provide 2-(alkoxycarbonyl)allyl esters in good to excellent yields. These functionalized allyl esters have been evaluated for their cell proliferation inhibition properties against breast cancer (MDA-MB-231 and 4T1) and pancreatic cancer (MIAPaCa-2) cell lines to explore their potential as anticancer agents. Several of the synthesized derivatives exhibit good potency against all three cancer cell lines.
View Article and Find Full Text PDFSeveral derivatives of aminobenzoboroxole have been prepared starting from 2-boronobenzaldehyde. All of these derivatives have been evaluated for their -mycobacterial activity on and cytotoxicity on breast cancer cell line MCF7. Based on these studies, all the tested molecules have been found to be generally non-toxic and benzoboroxoles with unsubstituted (primary) amines have been found to exhibit good -mycobacterial activity.
View Article and Find Full Text PDFNovel N,N-dialkyl carboxy coumarins have been synthesized as potential anticancer agents via inhibition of monocarboxylate transporter 1 (MCT1). These coumarin carboxylic acids have been evaluated for their in vitro MCT1 inhibition, MTT cancer cell viability, bidirectional Caco-2 cell permeability, and stability in human and liver microsomes. These results indicate that one of the lead candidate compounds 4a has good absorption, metabolic stability, and a low drug efflux ratio.
View Article and Find Full Text PDFNovel functionalized quaternary ammonium curcuminoids have been synthesized from piperazinyl curcuminoids and Baylis-Hillman reaction derived allyl bromides. These molecules are found to be highly water soluble with increased cytotoxicity compared to native curcumin against three cancer cell lines MIAPaCa-2, MDA-MB-231, and 4T1. Preliminary in vivo toxicity evaluation of a representative curcuminoid 5a in healthy mice indicates that this molecule is well tolerated based on normal body weight gains compared to control group.
View Article and Find Full Text PDFPotent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure-activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals.
View Article and Find Full Text PDF