Epidemiological studies indicate a bidirectional association between metabolic disturbances, including obesity and related pathological states, and mood disorders, most prominently major depression. However, the biological mechanisms mediating the comorbid relationship between the deranged metabolic and mood states remain incompletely understood. Here, we tested the hypothesis that the enhanced activation of brown fat tissue (BAT), known to beneficially regulate obesity and accompanying dysfunctional metabolic states, is also paralleled by an alteration of affective behaviour.
View Article and Find Full Text PDFThe signal transducer and activator of transcription 3 (STAT3) signalling pathway is activated through phosphorylation by Janus kinases in response to a diverse set of immunogenic and non-immunogenic triggers. Several distinct lines of evidence propose an intricate involvement of STAT3 in neural function relevant to behaviour in health and disease. However, in part due to the pleiotropic effects resulting from its DNA binding activity and the consequent regulation of expression of a variety of genes with context-dependent cellular consequences, the precise nature of STAT3 involvement in the neural mechanisms underlying psychopathology remains incompletely understood.
View Article and Find Full Text PDFThe highly conserved transcription factor LIM-only 3 (Lmo3) is involved in important neurodevelopmental processes in several brain areas including the amygdala, a central hub for the generation and regulation of emotions. Accordingly, a role for Lmo3 in the behavioral responses to ethanol and in the display of anxiety-like behavior in mice has been demonstrated while the potential involvement of Lmo3 in the control of mood-related behavior has not yet been explored. Using a mouse model of Lmo3 depletion (Lmo3), we here report that genetic Lmo3 deficiency is associated with altered performance in behavioral paradigms assessing anxiety-like and depression-like traits and additionally accompanied by impairments in learned fear.
View Article and Find Full Text PDFGestational infection constitutes a risk factor for the occurrence of psychiatric disorders in the offspring. Activation of the maternal immune system (MIA) with subsequent impact on the development of the fetal brain is considered to form the neurobiological basis for aberrant neural wiring and the psychiatric manifestations later in offspring life. The examination of validated animal models constitutes a premier resource for the investigation of the neural underpinnings.
View Article and Find Full Text PDF