Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways.
View Article and Find Full Text PDFMammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions.
View Article and Find Full Text PDFWnt1-inducible signaling protein 1 (WISP1/CCN4) is a secreted matricellular protein that is implicated in lung and airway remodeling. The macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with chronic lung diseases. In this study, we aimed to investigate the WISP1 signaling pathway and its ability to induce the expression of MIF in primary cultures of fibroblasts from normal human lungs (HLFs).
View Article and Find Full Text PDFCD44 is a single-chain transmembrane receptor that exists in multiple forms due to alternative mRNA splicing and post-translational modifications. CD44 is the main cell surface receptor of hyaluronan as well as other extracellular matrix molecules, cytokines, and growth factors that play important roles in physiological processes (such as hematopoiesis and lymphocyte homing) and the progression of various diseases, the predominant one being cancer. Currently, CD44 is an established cancer stem cell marker in several tumors, implying a central functional role in tumor biology.
View Article and Find Full Text PDFHyaluronan is one of the most influential components of the extracellular matrix. It is involved in the regulation of normal tissue function and architecture, while its metabolism is perturbed in a multitude of human diseases like inflammation, cancer, and viral infection. Given the implication of hyaluronan in a vast array of diseases, we describe here assays that can be utilized to study the quantity, size, subcellular localization, and binding capacity of hyaluronan by cells as well as its interactions with its major cellular receptor, CD44.
View Article and Find Full Text PDFBreast cancer is a common cancer in women. Breast cancer cells synthesize large amounts of hyaluronan to assist their proliferation, survival, migration and invasion. Accumulation of hyaluronan and overexpression of its receptor CD44 and hyaluronidase TMEM2 in breast tumors correlate with tumor progression and reduced overall survival of patients.
View Article and Find Full Text PDFHyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes for the patients.
View Article and Find Full Text PDFBreast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer.
View Article and Find Full Text PDFThe hyaluronan receptor CD44 can undergo proteolytic cleavage in two steps, leading to the release of its intracellular domain; this domain is translocated to the nucleus, where it affects the transcription of target genes. We report that CD44 cleavage in A549 lung cancer cells and other cells is promoted by transforming growth factor-beta (TGFβ) in a manner that is dependent on ubiquitin ligase tumor necrosis factor receptor-associated factor 4 or 6 (TRAF4 or TRAF6, respectively). Stem-like A549 cells grown in spheres displayed increased TRAF4-dependent expression of CD44 variant isoforms, CD44 cleavage, and hyaluronan synthesis.
View Article and Find Full Text PDFExtracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family.
View Article and Find Full Text PDFThe oncogenic role of hyaluronan in several aspects of tumor biology has been well established. Recent studies by us and others suggest that inhibition of hyaluronan synthesis could represent an emerging therapeutic approach with significant clinical relevance in controlling different breast cancer subtypes, including triple-negative breast cancer. Epidemiological and preclinical studies have revealed the therapeutic potential of aspirin (acetyl salicylate), a classical anti-inflammatory drug, in patients with cancer.
View Article and Find Full Text PDFThe prominent role of CD44 in tumor cell signaling together with its establishment as a cancer stem cell (CSC) marker for various tumor entities imply a key role for CD44 in CSC functional properties. Hyaluronan, the main ligand of CD44, is a major constituent of CSC niche and, therefore, the hyaluronan-CD44 signaling axis is of functional importance in this special microenvironment. This review aims to provide recent advances in the importance of hyaluronan-CD44 interactions in the acquisition and maintenance of a CSC phenotype.
View Article and Find Full Text PDFHyaluronan-rich matrices are abundant in ECM and are involved in biological processes, such as cell growth and migration. Hyaluronan is synthesized by the hyaluronan synthase family of enzymes, HAS1, HAS2 and HAS3; the HAS1 and HAS3 genes give rise to different transcripts through alternative splicing, and the HAS2 gene to a non-coding RNA antisense transcript in addition to the protein-coding transcript. Biosynthesis of hyaluronan increases during inflammation and cancer and is regulated by cytokines and growth factors.
View Article and Find Full Text PDFThe malignant phenotype of various cancers is linked to enhanced expression of hyaluronan, a pro-angiogenic glycosaminoglycan whose expression is suppressed by 4-methylumbelliferone (4-MU), a non-toxic oral agent used as a dietary supplement to improve health and combat prostate cancer. In this study, we investigated the role of 4-MU in mammary carcinoma cells with distinct malignant phenotypes and estrogen receptor (ER) status, a major prognostic factor in the clinical management of breast cancers. We focused on two breast cancer cell lines, the low metastatic and ERα+ MCF-7 cells, and the highly-aggressive and ERα- MDA-MB-231 cells.
View Article and Find Full Text PDFPleiotrophin (PTN) stimulates endothelial cell migration through binding to receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and αβ integrin. Screening for proteins that interact with RPTPβ/ζ and potentially regulate PTN signaling, through mass spectrometry analysis, identified cyclin-dependent kinase 5 (CDK5) activator p35 among the proteins displaying high sequence coverage. Interaction of p35 with the serine/threonine kinase CDK5 leads to CDK5 activation, known to be implicated in cell migration.
View Article and Find Full Text PDFThe tightly regulated biosynthesis and catabolism of the glycosaminoglycan hyaluronan, as well as its role in organizing tissues and cell signaling, is crucial for the homeostasis of tissues. Overexpression of hyaluronan plays pivotal roles in inflammation and cancer, and markedly high serum and tissue levels of hyaluronan are noted under such pathological conditions. This review focuses on the complexity of the regulation at transcriptional and posttranslational level of hyaluronan synthetic enzymes, and the outcome of their aberrant expression and accumulation of hyaluronan in clinical conditions, such as systemic B-cell cancers, aggressive breast carcinomas, metabolic diseases and virus infection.
View Article and Find Full Text PDFIGF-IR is highly associated with the behaviour of breast cancer cells. In ERα-positive breast cancer, IGF-IR is present at high levels. In clinical practice, prolonged treatment with anti-estrogen agents results in resistance to the therapy with activation of alternative signaling pathways.
View Article and Find Full Text PDFSynthesis, deposition, and interactions of hyaluronan (HA) with its cellular receptor CD44 are crucial events that regulate the onset and progression of tumors. The intracellular signaling pathways initiated by HA interactions with CD44 leading to tumorigenic responses are complex. Moreover, HA molecules may perform dual functions depending on their concentration and size.
View Article and Find Full Text PDFExtracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis.
View Article and Find Full Text PDFProteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis.
View Article and Find Full Text PDFThe 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10+ cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c).
View Article and Find Full Text PDFExtensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment.
View Article and Find Full Text PDFSerglycin has been initially characterized as an intracellular proteoglycan expressed by hematopoietic cells. All inflammatory cells highly synthesize serglycin and store it in granules, where it interacts with numerous inflammatory mediators, such as proteases, chemokines, cytokines, and growth factors. Serglycin is implicated in their storage into the granules and their protection since they are secreted as complexes and delivered to their targets after secretion.
View Article and Find Full Text PDF