Awareness and early identification of hypertension is crucial in reducing the burden of cardiovascular disease (CVD). Artificial intelligence-based analysis of 12-lead electrocardiograms (ECGs) can already detect arrhythmias and hypertension. We performed an observational two-center study in order to develop a machine learning algorithm to proactively detect arterial hypertension from single-lead ECGs.
View Article and Find Full Text PDFObjectives: Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients' initial evaluation.
Methods: We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD.