Publications by authors named "Spyros Diplas"

Synthesis of MoC bare MXenes, without surface terminations groups, via chemical vapor deposition (CVD) on metal foils is scientifically a very intriguing crystal growth process, and there are still challenges and limited fundamental understanding to overcome to obtain high yield and wide crystal size lateral growth. Achieving large area coverage via direct growth is scientifically vital to utilize the full potential of their unique properties in different applications. In this study, we sought to expand the boundaries of the current CVD growth approach for MoC MXenes and gain insights into the possibilities and limitations of large area growth, with a particular focus on controlling Mo concentration.

View Article and Find Full Text PDF

ZnO-ZrO mixed oxide (ZnZrO) catalysts are widely studied as selective catalysts for CO hydrogenation into methanol at high-temperature conditions (300-350 °C) that are preferred for the subsequent zeolite-catalyzed conversion of methanol into hydrocarbons in a tandem process. Zn, a key ingredient of these mixed oxide catalysts, is known to volatilize from ZnO under high-temperature conditions, but little is known about Zn mobility and volatility in mixed oxides. Here, an array of and characterization techniques (scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Infrared (IR)) was used to reveal that Zn species are mobile between the solid solution phase with ZrO and segregated and/or embedded ZnO clusters.

View Article and Find Full Text PDF

Wrought magnesium alloys have received attention due to their potential application as lightweight materials. However, their use is limited by their poor corrosion resistance. Rare earth additions have the potential to enhance corrosion resistance.

View Article and Find Full Text PDF

A galvanic deposition method for the in-situ formation of Pt nanoparticles (NPs) on top and inner surfaces of high-aspect-ratio black TiO -nanotube electrodes (bTNTs) for true utilization of their total surface area has been developed. Density functional theory calculations indicated that the deposition of Pt NPs was favored on bTNTs with a preferred [004] orientation and a deposition mechanism occurring via oxygen vacancies, where electrons were localized. High-resolution transmission electron microscopy images revealed a graded deposition of Pt NPs with an average diameter of around 2.

View Article and Find Full Text PDF

Homogenous aSi Al H alloyed thin films, made by magnetron sputtering, has been found to exhibit tunable band gap and dielectric constant depending on their composition. The optical properties of alloys are largely defined by their electronic structure, which is is strongly influenced by interatomic charge transfer. In this work we have quantified interatomic charge transfer between Si, Al and H in aSi Al H thin-films, with [Formula: see text] and [Formula: see text].

View Article and Find Full Text PDF

Nanostructured materials offer unique electronic and optical properties compared to their bulk counterparts. The challenging part of the synthesis is to create a balance between the control of design, size limitations, up-scalability and contamination. In this work we show that self-organized Al nanowires in amorphous Si can be produced at room temperature by magnetron co-sputtering using two individual targets.

View Article and Find Full Text PDF

Cuprous oxide (CuO) is a promising material for large scale photovoltaic applications. The efficiencies of thin film structures are, however, currently lower than those for structures based on CuO sheets, possibly due to their poorer transport properties. This study shows that post-deposition rapid thermal annealing (RTA) of CuO films is an effective approach for improving carrier transport in films prepared by reactive magnetron sputtering.

View Article and Find Full Text PDF

The electronic structures of the two main compounds of the binary zinc antimonides that are stable at room temperature, Zn(1)Sb(1) and β-Zn(4)Sb(3), were probed with x-ray photoelectron spectroscopy. Additionally, electron energy loss measurements and density functional theory calculations are presented. The compounds are found to share a very similar electronic structure.

View Article and Find Full Text PDF