This paper investigates numerically the effect of damage evolution on adiabatic shear banding (ASB) formation and its transition to fracture during high-speed blanking of 304 stainless steel sheets. A structural-thermal-damage-coupled finite element (FE) analysis is developed in LS-DYNA considering the modified Johnson-Cook thermo-viscoplastic model for both plasticity flow rule and damage law, while further, a temperature-dependent fracture criterion is implemented by introducing a critical temperature. The modeling approach is initially validated against experimental data regarding the fracture profile and ASB width.
View Article and Find Full Text PDF