Mpox virus (MPXV) primarily infects human skin to cause lesions. Currently, robust models that recapitulate skin infection by MPXV are lacking. Here we demonstrate that human induced pluripotent stem cell-derived skin organoids are susceptible to MPXV infection and support infectious virus production.
View Article and Find Full Text PDFSnakebite envenoming was reintroduced as a Category A Neglected Tropical Disease by the World Health Organization in 2017. Since then, increased attention has been directed towards this affliction and towards the development of a deeper understanding of how snake venoms exert their toxic effects and how antivenoms can counter them. However, most of our in vivo generated knowledge stems from the use of animal models which do not always accurately reflect how the pathogenic effects of snake venoms manifest in humans.
View Article and Find Full Text PDFFaithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to kinetochores to initiate SAC signaling and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here, we show that a helical fragment within the kinetochore-targeting N-terminal extension (NTE) module of MPS1 is required for interactions with kinetochores and forms intramolecular interactions with its adjacent tetratricopeptide repeat (TPR) domain.
View Article and Find Full Text PDFDiscovered in 1991 in a screen for genes involved in spindle pole body duplication, the monopolar spindle 1 (Mps1) kinase has since claimed a central role in processes that ensure error-free chromosome segregation. As a result, Mps1 kinase activity has become an attractive candidate for pharmaceutical companies in the search for compounds that target essential cellular processes to eliminate, for example, tumour cells or pathogens. Research in recent decades has offered many insights into the molecular function of Mps1 and its regulation.
View Article and Find Full Text PDFCell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction.
View Article and Find Full Text PDFTranscription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p.
View Article and Find Full Text PDF