Publications by authors named "Spyridon Michalakis"

Motivated by recent experiments with ultracold matter, we derive a new bound on the propagation of information in D-dimensional lattice models exhibiting 1/r^{α} interactions with α>D. The bound contains two terms: One accounts for the short-ranged part of the interactions, giving rise to a bounded velocity and reflecting the persistence of locality out to intermediate distances, whereas the other contributes a power-law decay at longer distances. We demonstrate that these two contributions not only bound but, except at long times, qualitatively reproduce the short- and long-distance dynamical behavior following a local quench in an XY chain and a transverse-field Ising chain.

View Article and Find Full Text PDF

The maximum speed with which information can propagate in a quantum many-body system directly affects how quickly disparate parts of the system can become correlated and how difficult the system will be to describe numerically. For systems with only short-range interactions, Lieb and Robinson derived a constant-velocity bound that limits correlations to within a linear effective 'light cone'. However, little is known about the propagation speed in systems with long-range interactions, because analytic solutions rarely exist and because the best long-range bound is too loose to accurately describe the relevant dynamical timescales for any known spin model.

View Article and Find Full Text PDF

For quantum lattice systems with local interactions, the Lieb-Robinson bound serves as an alternative for the strict causality of relativistic systems and allows the proof of many interesting results, in particular, when the energy spectrum exhibits an energy gap. In this Letter, we show that for translation invariant systems, simultaneous eigenstates of energy and momentum with an eigenvalue that is separated from the rest of the spectrum in that momentum sector can be arbitrarily well approximated by building a momentum superposition of a local operator acting on the ground state. The error satisfies an exponential bound in the size of the support of the local operator, with a rate determined by the gap below and above the targeted eigenvalue.

View Article and Find Full Text PDF