Publications by authors named "Spyracopoulos L"

The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state.

View Article and Find Full Text PDF

Protein turnover in cells is regulated by the ATP dependent activity of the Hsp90 chaperone. In concert with accessory proteins, ATP hydrolysis drives the obligate Hsp90 dimer through a cycle between open and closed states that is critical for assisting the folding and stability of hundreds of proteins. Cycling is initiated by ATP binding to the ATPase domain, with the chaperone and the active site gates in the dimer in open states.

View Article and Find Full Text PDF

F NMR spectroscopy is a powerful tool for the study of the structures, dynamics, and interactions of proteins bearing cysteine residues chemically modified with a trifluoroacetone group (CYF residue). F NMR relaxation rates for the fluoromethyl group of CYF residues are sensitive to overall rotational tumbling of proteins, fast rotation about the CF methyl axis, and the internal motion of the CYF side-chain. To develop a quantitative understanding of these various motional contributions, we used the model-free approach to extend expressions for F- T NMR relaxation to include side-chain motions for the CYF residue.

View Article and Find Full Text PDF

Hsp90 is a crucial chaperone whose ATPase activity is fundamental for stabilizing and activating a diverse array of client proteins. Binding and hydrolysis of ATP by dimeric Hsp90 drive a conformational cycle characterized by fluctuations between a compact, N- and C-terminally dimerized catalytically competent closed state and a less compact open state that is largely C-terminally dimerized. We used F and H dynamic nuclear magnetic resonance (NMR) spectroscopy to study the opening and closing kinetics of Hsp90 and to determine the k for ATP hydrolysis.

View Article and Find Full Text PDF

Cullin-RING ubiquitin ligases are a diverse family of ubiquitin ligases that catalyze the synthesis of K48-linked polyubiquitin (polyUb) chains on a variety of substrates, ultimately leading to their degradation by the proteasome. The cullin-RING enzyme scaffold processively attaches a Ub molecule to the distal end of a growing chain up to lengths of eight Ub monomers. However, the molecular mechanism governing how chains of increasing size are built using a scaffold of largely fixed dimensions is not clear.

View Article and Find Full Text PDF

Interleukin-8 (CXCL8), a potent neutrophil-activating chemokine, exerts its function by activating the CXCR1 receptor that belongs to class A G protein-coupled receptors (GPCRs). Receptor activation involves interactions between the CXCL8 N-terminal loop and CXCR1 N-terminal domain (N-domain) residues (Site-I) and between the CXCL8 N-terminal and CXCR1 extracellular/transmembrane residues (Site-II). CXCL8 exists in equilibrium between monomers and dimers, and it is known that the monomer binds CXCR1 with much higher affinity and that Site-I interactions are largely responsible for the differences in monomer vs.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond.

View Article and Find Full Text PDF

Ring1-YY1-binding protein (RYBP) is a member of the non-canonical polycomb repressive complex 1 (PRC1), and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF) domain.

View Article and Find Full Text PDF

Cells are exposed to thousands of DNA damage events on a daily basis. This damage must be repaired to preserve genetic information and prevent development of disease. The most deleterious damage is a double-strand break (DSB), which is detected and repaired by mechanisms known as non-homologous end-joining (NHEJ) and homologous recombination (HR), which are components of the DNA damage response system.

View Article and Find Full Text PDF

Hsp90 is a dimeric molecular chaperone responsible for the folding, maturation, and activation of hundreds of substrate proteins called 'clients'. Numerous co-chaperone proteins regulate progression through the ATP-dependent client activation cycle. The most potent stimulator of the Hsp90 ATPase activity is the co-chaperone Aha1p.

View Article and Find Full Text PDF

The proteasome regulates timed degradation of proteins using both intrinsic and extrinsic receptors that recognize polyubiquitin chains on targets. In this issue of Structure, Chen et al. (2016) outline the structural basis of how intrinsic receptors prefer ubiquitin-like domains rather than ubiquitin, to bind extrinsic co-receptors.

View Article and Find Full Text PDF

Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls.

View Article and Find Full Text PDF

Recognition and repair of double-stranded DNA breaks (DSB) involves the targeted recruitment of BRCA tumor suppressors to damage foci through binding of both ubiquitin (Ub) and the Ub-like modifier SUMO. RAP80 is a component of the BRCA1 A complex, and plays a key role in the recruitment process through the binding of Lys(63)-linked poly-Ub chains by tandem Ub interacting motifs (UIM). RAP80 also contains a SUMO interacting motif (SIM) just upstream of the tandem UIMs that has been shown to specifically bind the SUMO-2 isoform.

View Article and Find Full Text PDF

Ubc13 is an E2 ubiquitin conjugating enzyme that functions in nuclear DNA damage signaling and cytoplasmic NF-κB signaling. Here, we present the structures of complexes of Ubc13 with two inhibitors, NSC697923 and BAY 11-7082, which inhibit DNA damage and NF-κB signaling in human cells. NSC697923 and BAY 11-7082 both inhibit Ubc13 by covalent adduct formation through a Michael addition at the Ubc13 active site cysteine.

View Article and Find Full Text PDF

Initiation of the DNA damage and innate immune responses is dependent upon the flow of chemical information through coupled protein-protein interaction networks and driven by the synthesis and recognition of Lys 63 linked polyubiquitin (polyUb) chains on adaptor proteins. The central chemical step in Lys 63-linked protein ubiquitination involves the reaction of a specific lysine on a target protein with Ub that is covalently attached as a thioester conjugate to the Ub conjugating enzyme (E2) Ubc13. The active site cysteine of Ubc13, and E2 enzymes in general, is buttressed by a flexible loop.

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a central role in maintaining cellular homeostasis by facilitating activation of a large number of client proteins. ATP-dependent client activation by Hsp90 is tightly regulated by a host of co-chaperone proteins that control progression through the activation cycle. ATPase stimulation of Hsp90 by Aha1p requires a conserved RKxK motif that interacts with the catalytic loop of Hsp90.

View Article and Find Full Text PDF

Signal transduction within the DNA damage response is driven by the flux of protein-protein interaction cascades that ultimately recruit repair complexes to sites of damage. The protein RAP80 plays a central role in the damage response by targeting BRCA1/BRCA2 tumor suppressors to DNA damage foci through multivalent binding of Lys-63-linked polyubiquitin chains. Mutations within the high penetrance BRCA1/BRCA2 genes account for ∼20% of familial breast cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Prion protein (PrP(C)) transitions into an infectious isoform (PrP(Sc)), contributing to severe neurodegenerative diseases called transmissible spongiform encephalopathies.
  • Tricyclic phenothiazine compounds like promazine and chlorpromazine show potential in inhibiting PrP(Sc) formation, but the exact molecular workings are not fully understood.
  • Research indicates that promazine binding induces structural changes in the prion protein and stabilizes certain regions, which may help the normal isoform resist forming harmful aggregates.
View Article and Find Full Text PDF
Article Synopsis
  • NMR-monitored chemical shift titrations are effective for studying weak protein-ligand interactions, providing important thermodynamic details like dissociation constants (K (D)) and kinetic parameters in fast exchange scenarios.
  • A new chemical shift titration method was developed that enhances the precision of K (D) measurements for 1:1 protein-ligand interactions, leading to accurate kinetic rate constants for off-rate (k (off)).
  • Analysis through classical line shape methods and quantum mechanical simulations showed high accuracy (better than 5%) and precision (around 13%) for calculating k (off), suggesting that this approach can be reliable for a range of interaction rates.
View Article and Find Full Text PDF

NMR is ideally suited for the analysis of protein-protein and protein ligand interactions with dissociation constants ranging from ~2 μM to ~1 mM, and with kinetics in the fast exchange regime on the NMR timescale. For the determination of dissociation constants (K ( D )) of 1:1 protein-protein or protein-ligand interactions using NMR, the protein and ligand concentrations must necessarily be similar in magnitude to the K ( D ), and nonlinear least squares analysis of chemical shift changes as a function of ligand concentration is employed to determine estimates for the parameters K ( D ) and the maximum chemical shift change (Δδ(max)). During a typical NMR titration, the initial protein concentration, [P (0)], is held nearly constant.

View Article and Find Full Text PDF

The TP53 gene (encoding the p53 tumor suppressor) is rarely mutated, although frequently inactivated, in medulloblastoma and ependymoma. Recent work in mouse models showed that the loss of p53 accelerated the development of medulloblastoma. The mechanism underlying p53 inactivation in human brain tumors is not completely understood.

View Article and Find Full Text PDF

Biological organisms orchestrate coordinated responses to external stimuli through temporal fluctuations in protein-protein interaction networks using molecular mechanisms such as the synthesis and recognition of polyubiquitin (polyUb) chains on signaling adaptor proteins. One of the pivotal chemical steps in ubiquitination involves reaction of a lysine amino group with a thioester group on an activated E2, or ubiquitin conjugation enzyme, to form an amide bond between Ub and a target protein. In this study, we demonstrate a nominal 14-fold range for the rate of the chemical step, k(cat), catalyzed by different E2 enzymes using non-steady-state, single-turnover assays.

View Article and Find Full Text PDF

Protein folding involves the formation of secondary structural elements from the primary sequence and their association with tertiary assemblies. The relation of this primary sequence to a specific folded protein structure remains a central question in structural biology. An increasing body of evidence suggests that variations in homologous sequence ranging from point mutations to substantial insertions or deletions can yield stable proteins with markedly different folds.

View Article and Find Full Text PDF

RAP80 plays a key role in signal transduction in the DNA damage response by recruiting proteins to DNA damage foci by binding K63-polyubiquitin chains with two tandem ubiquitin-interacting motifs (tUIM). It is generally recognized that the typically weak interaction between ubiquitin (Ub) and various recognition motifs is intensified by themes such as tandem recognition motifs and Ub polymerization to achieve biological relevance. However, it remains an intricate problem to develop a detailed molecular mechanism to describe the process that leads to amplification of the Ub signal.

View Article and Find Full Text PDF

Activation of transcription factor NF-kappaB requires Lys63-linked polyubiquitination of the E3 ubiquitin ligase TRAF6 via protein-protein interactions mediated by a RING domain. In this study, intra- and intermolecular chemical exchange processes of the TRAF6 RING domain were analyzed by (15)N NMR spectroscopy. Micro- to millisecond time scale motions were assessed through R 1, R 2, NOE, and cross-correlated relaxation measurements, and the kinetics of these motions were quantified with relaxation dispersion.

View Article and Find Full Text PDF