Publications by authors named "Sprygin Alexander"

The lack of data on the whole-genome analysis of genotype II African swine fever virus (ASFV) isolates significantly hinders our understanding of its molecular evolution, and as a result, the range of single nucleotide polymorphisms (SNPs) necessary to describe a more accurate and complete scheme of its circulation. In this regard, this study aimed to identify unique SNPs, conduct phylogenetic analysis, and determine the level of homology of isolates obtained in the period from 2019 to 2022 in the central and eastern regions of Russia. Twenty-one whole-genome sequences of genotype II ASFV isolates were assembled, analyzed, and submitted to GenBank.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) is an emerging transboundary and highly infectious viral disease mainly affecting cattle. The fact that it was initially confined to Africa and then spread beyond its geographical range to other regions, including the Middle East, Turkey, Europe, the Balkans, Russia and Asia, is an indication of the underestimation and neglect of this disease. Vaccination is considered the most effective way to control the spread of LSDV, when combined with other control measures.

View Article and Find Full Text PDF

African swine fever virus (ASFV) isolates are grouped and tracked through analysis of their central variable region (CVR) sequences. In this study, sequences of 70 ASFV isolates collected from different regions of Russia between 2018 and 2022 were analyzed. The analysis based on the CVR sequences indicated that the isolates belonged to three distinct groups.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) is a transboundary viral infection, affecting cattle with characteristic manifestations involving multiple body systems. A distinctive characteristic of lumpy skin disease is the subclinical disease manifestation wherein animals have viremia and shed the virus through nasal and ocular discharges, while exhibiting no nodules but enlarged lymph nodes that are easily oversighted by inexperienced vets. Further research on the role of subclinically ill animals in the transmission of LSD virus (LSDV) can contribute to the development of more effective tools to control the disease worldwide.

View Article and Find Full Text PDF

Introduction: It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis.

Methods: In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus.

View Article and Find Full Text PDF

Peste des petits ruminants (PPR) is a transboundary viral disease that affects small ruminants, such as goats and sheep, in Africa, the Middle East, and Asia, causing substantial damage to livelihoods and disrupting livestock trade. Although Russia is PPR virus (PPRV)-free, controlling PPRV in neighboring countries is the top national priority. Recent PPR outbreaks in Mongolia and other countries in the Middle East caused by a lineage IV virus represent a risk of transboundary emergence in neighboring countries, including China, Kazakhstan, and Russia.

View Article and Find Full Text PDF

In 2018, the molecular epidemiology of lumpy skin disease in Russia was characterized by a surge in novel recombinant vaccine-like strains causing outbreaks along the southern border, spreading in an easterly direction. Currently, five distinct novel recombinant vaccine-like lineages have been described, designated as clusters 2.1 to 2.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) outbreaks in Southeast and South Asia are attributed to different lineages of LSD virus (LSDV). Variants belonging to the novel recombinant cluster 2.5 circulate in China and Thailand, while a Kenyan sheep and goat pox (KSGP) strain from cluster 1.

View Article and Find Full Text PDF

The pathology caused by three different isolates of lumpy skin disease virus, classical field cluster 1.2 strain Dagestan/2015, recombinant vaccine-like cluster 2.1 strain Saratov/2017, and cluster 2.

View Article and Find Full Text PDF
Article Synopsis
  • Gene editing tools, especially CRISPR/Cas9, are crucial for studying cell biology and translating genomic data into practical uses.
  • This review compares CRISPR/Cas9 with older methods like Zinc Finger Proteins and TALEN, highlighting its advantages in agricultural and veterinary contexts.
  • It discusses successful and unsuccessful applications of CRISPR/Cas9 in modifying organisms, and explores future possibilities in vaccine development, disease resistance, and improving traits.
View Article and Find Full Text PDF

Newcastle disease virus () is a contagious high-impact poultry pathogen with infections detected worldwide. In the present study, 19,500 clinical samples from wild bird species and poultry collected from 28 regions of Russia between 2017 and 2021 were screened for the presence of the genome. NDV RNA was detected in 15 samples from wild birds and 63 samples from poultry.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) has long been recognized as a highly contagious, transboundary disease of livestock incurring substantial losses and burdens to animal production and trade across Africa, the Middle East, and Asia. Due to the recent emergence of the O/ME-SA/Ind-2001 lineage globally contributing to the expansion of FMD, molecular epidemiological investigations help in tracing the evolution of foot-and-mouth disease virus (FMDV) across endemic and newly affected regions. In this work, our phylogenetic analysis reveals that the recent FMDV incursions in Russia, Mongolia, and Kazakhstan in 2021-2022 were due to the virus belonging to the O/ME-SA/Ind-2001e sublineage, belonging to the cluster from Cambodian FMDV isolates.

View Article and Find Full Text PDF

African swine fever is a contagious viral disease that has been spreading through Europe and Asia since its initial report from Georgia in 2007. Due to the large genome size of the causative agent, the African swine fever virus (ASFV), the molecular epidemiology, and virus evolution are analyzed by employing different markers. Most of these markers originate from single nucleotide polymorphisms or disparities in the copy number of tandem repeat sequences observed during the comparisons of full genome sequences produced from ASFVs isolated during different outbreaks.

View Article and Find Full Text PDF

Introduction: Since the first report of outbreaks of African swine fever (ASF) in Georgia in 2007, the disease has expanded into Europe, Russia, and Asia, spreading rapidly contact with infected animals including domestic pigs and wild boars. The vast expansion of this Genotype II African swine fever virus (ASFV) across wide-ranging territories and hosts inevitably led to the acquisition of novel mutations. These mutations could be used to track the molecular epidemiology of ASFV, provided that they are unique to strains restricted within a certain area.

View Article and Find Full Text PDF

In 2021, several isolates of the H5N5 avian influenza virus (AIV) were detected in Europe and the Russian Federation, which differed from those detected in 2020. Genetic analysis revealed a relationship between the highly pathogenic avian influenza H5N5 subtype, detected in Europe, and some isolates detected in the Russian Federation territory in 2020-2021: it was shown that both originated in the Caspian Sea regions around the autumn of 2020. The appearance of H5N5 subtype viruses in the spring of 2021 in Europe and the Russian Federation was not associated with the mass migration of birds from Africa.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) caused by LSD virus (LSDV), is a member of the poxvirus genus . It is classified as a notifiable disease by the World Organization for Animal Health (WOAH) based on its potential for rapid spread and global economic impact. Due to these characteristics, the mode of LSDV transmission has prompted intensive research efforts.

View Article and Find Full Text PDF

Poxviruses are double-stranded DNA viruses with several members displaying restricted host ranges. They are genetically stable with low nucleotide mutation rates compared to other viruses, due to the poxviral high-fidelity DNA polymerase. Despite the low accumulation of mutations per replication cycle, poxvirus genomes can recombine with each other to generate genetically rearranged viruses through recombination, a process directly associated with replication and the aforementioned DNA polymerase.

View Article and Find Full Text PDF

Novel lumpy skin disease virus (LSDV) strains of recombinant origin are on the rise in South East Asia following the first emergence in 2017, and published evidence demonstrates that such genetic lineages currently dominate the circulation. Mongolia reported first LSD outbreaks in 2021 in a north-eastern region sharing borders with Russia and China. For each of 59 reported LSDV outbreaks, the number of susceptible animals ranged from 8 to 8600 with a median of 572, while the number of infected animals ranged from one to 355 with a median of 14.

View Article and Find Full Text PDF

This study investigates the phylogenomic relatedness between sheep pox viruses (SPPVs) circulating in Central Russia in 2018-2019 with the NISKHI vaccine strain used in the country, based on their complete genome sequences. The sheep pox outbreaks occurred 1 year apart in the adjacent regions of Tula and Moscow. Full genome sequences were generated by sequencing DNA directly obtained from Trizol-extracted scabs, using the DNBSEQ-400 platform (MGI Tech, China).

View Article and Find Full Text PDF

Since 1989, lumpy skin disease of cattle (LSD) has spread out of Africa via the Middle East northwards and eastwards into Russia, the Far East and South-East Asia. It is now threatening to become a worldwide pandemic, with Australia possibly next in its path. One of the research gaps on the disease concerns its main mode of transmission, most likely via flying insect vectors such as biting flies or mosquitoes.

View Article and Find Full Text PDF

African swine fever virus (ASFV), classified as genotype II, was introduced into Georgia in 2007, and from there, it spread quickly and extensively across the Caucasus to Russia, Europe and Asia. The molecular epidemiology and evolution of these isolates are predominantly investigated by means of phylogenetic analysis based on complete genome sequences. Since this is a costly and time-consuming endeavor, short genomic regions containing informative polymorphisms are pursued and utilized instead.

View Article and Find Full Text PDF

Lumpy skin disease continues to pose a threat to countries in the East and Asia-Pacific regions. Although only occasional LSDV outbreaks have been reported recently in Russia, these have been mainly restricted to the Far East region of the country. An increase in the number of outbreaks in South East Asia has been attributed to recombinant vaccine-like LSDV strains.

View Article and Find Full Text PDF

Background: Since the first description of lumpy skin disease virus (LSDV) in Africa in the 1920's, it has brazenly spread beyond Africa into the Middle East, Europe and most recently Asia. In 2017 the first atypical LSDV recombinant strain was reported in Russia, composed of both a live-attenuated Neethling vaccine strain and Kenyan vaccine strain. An increase in LSDV research enabled a public release of numerous full genome sequences of unique recombinant LSDV strains from Kazakhstan, Russia, China and Vietnam.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) is an economically important transboundary disease affecting cattle, causing large economic losses such as decreased production and trade restrictions. LSD has been a historically neglected disease since it previously caused disease limited to the African continent. Currently, the epidemiology of LSD virus is based on how the disease is transmitted in tropical and sub-tropical climates.

View Article and Find Full Text PDF