Publications by authors named "Sprott G"

The relation between archaeal lipid structures and their activity as adjuvants may be defined and explored by synthesizing novel head groups covalently linked to archaeol (2,3-diphytanyl-sn-glycerol). Saturated archaeol, that is suitably stable as a precursor for chemical synthesis, was obtained in high yield from Halobacterium salinarum. Archaeosomes consisting of the various combinations of synthesized lipids, with antigen entrapped, were used to immunize mice and subsequently determine CD8(+) and CD4(+)-T cell immune responses.

View Article and Find Full Text PDF

Pseudomonas aeruginosa responds to phosphate limitation by inducing the expression of phosphate transport systems, phosphatases, hemolysins and a DNase, many of which are important for virulence. Here we report that under phosphate-limiting conditions, P. aeruginosa produces a phosphate-free ornithine lipid (OL) as the primary membrane lipid.

View Article and Find Full Text PDF

Vesicles comprised of the ether glycerolipids of the archaeon Methanobrevibacter smithii (archaeosomes) are potent adjuvants for evoking CD8(+) T cell responses. We therefore explored the ability of archaeosomes to overcome immunologic tolerance to self-antigens. Priming and boosting of mice with archaeosome-antigen evoked comparable CD8(+) T cell response and tumor protection to an alternate boosting strategy utilizing live bacterial vectors for antigen delivery.

View Article and Find Full Text PDF

The success of lipid membranes as cytotoxic T-cell (CTL) adjuvants requires targeted uptake by antigen-presenting cells (APCs) and delivery of the antigen cargo to the cytosol for processing. To target the phosphatidylserine (PS) receptor of APCs, we prepared antigen-loaded liposomes containing dipalmitoylphosphatidylserine and archaeal lipid liposomes (archaeosomes), containing an equivalent amount of archaetidylserine, and compared their ability to promote short and long-term CTL activity in animals. CTL responses were enhanced by the incorporation of PS into phosphatidylcholine/cholesterol liposomes and, to a lesser extent, into phosphatidylglycerol/cholesterol liposomes, that correlated to the amount of surface amino groups reactive with trinitrobenzoyl sulfonate.

View Article and Find Full Text PDF

To commercialize the production of glycolipid adjuvants, their synthesis needs to be both robust and inexpensive. Herein we describe a semi-synthetic approach where the lipid acceptor is derived from the biomass of the archaeon Halobacterium salinarum, and the glycosyl donors are chemically synthesized. This work presents some preliminary results using the promoter system N-iodosuccinimide (NIS) and a stable 0.

View Article and Find Full Text PDF

A difficulty in explaining the mechanism whereby archaeal lipid membrane vesicles (archaeosomes) deliver entrapped protein antigens to the MHC class I cytosolic pathway from phagolysosomes of antigen-presenting cells has been the observation that they tend not to fuse. Here, we determine that archaeosomes, composed of archaeal isoprenoid mixtures of glyco and phospholipids, can be highly fusogenic when exposed to the pH and enzymes found in late phagolysosomes. Fusions were strictly dependent on acidic pH and the presence of alpha- or beta-glucosidase.

View Article and Find Full Text PDF

As part of a programme to optimize the use of archaeal-lipid liposomes (archaeosomes) as vaccine adjuvants, we present the synthesis and immunological testing of an oligomeric series of mannose glycolipids (Manp(1-5)). To generate the parent archaeol alcohol precursor, the polar lipids extracted from the archaeon Halobacterium salinarum were hydrolyzed to remove polar head groups, and the archaeol so generated partitioned into diethyl ether. This alcohol was then iteratively glycosylated with the donor 2-O-acetyl-3,4,6-tri-O-benzyl-alpha/beta-d-mannopyranosyl trichloroacetimidate to yield alpha-Manp-(1-->2) oligomers.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing subunit vaccines with archaeosome lipid vesicles as adjuvants to induce strong immune responses against diseases and cancers.
  • The study focuses on synthesizing disaccharide archaeols, showing that different carbohydrate structures can significantly affect immune response potency.
  • High activity of cytotoxic CD8(+) T cells was achieved with specific glycosylarchaeols, indicating that these glyco-adjuvants could be promising, cost-effective options for future vaccines.
View Article and Find Full Text PDF

Archaeosomes (liposomes comprised of glycerolipids of Archaea) constitute potent adjuvants for the induction of Th1, Th2 and CD8(+) T cell responses to the entrapped soluble antigen. Archaeal lipids are uniquely constituted of ether-linked isoprenoid phytanyl cores conferring stability to the membranes. Additionally, varied head groups displayed on the glycerol-lipid cores facilitate unique immunostimulating interactions with mammalian antigen-presenting cells (APCs).

View Article and Find Full Text PDF

Vaccines capable of eliciting long-term T cell immunity are required for combating many diseases. Live vectors can be unsafe whereas subunit vaccines often lack potency. We previously reported induction of CD8(+) T cells to Ag entrapped in archaeal glycerolipid vesicles (archaeosomes).

View Article and Find Full Text PDF

The sulfonolipid sulfoquinovosyl diacylglycerol normally associated with photosynthetic membranes was identified as a major lipid in Marinococcus halophilus, Salinicoccus hispanicus ("Marinococcus hispanicus"), and Marinococcus sp. H8 (Planococcus sp. H8).

View Article and Find Full Text PDF

The membranes of extremely halophilic Archaea are characterized by the abundance of a diacidic phospholipid, archaetidylglycerol methylphosphate (PGP-Me), which accounts for 50-80 mol% of the polar lipids, and by the absence of phospholipids with choline, ethanolamine, inositol, and serine head groups. These membranes are stable in concentrated 3-5 m NaCl solutions, whereas membranes of non-halophilic Archaea, which do not contain PGP-Me, are unstable and leaky under such conditions. By x-ray diffraction and vesicle permeability measurements, we demonstrate that PGP-Me contributes in an essential way to membrane stability in hypersaline environments.

View Article and Find Full Text PDF

Archaeosomes prepared from total polar lipids extracted from six archaeal species with divergent lipid compositions had the capacity to deliver antigen for presentation via both MHC class I and class II pathways. Lipid extracts from Halobacterium halobium and from Halococcus morrhuae strains 14039 and 16008 contained archaetidylglycerol methylphosphate and sulfated glycolipids rich in mannose residues, and lacked archaetidylserine, whereas the opposite was found in Methanobrevibacter smithii, Methanosarcina mazei and Methanococcus jannaschii. Annexin V labeling revealed a surface orientation of phosphoserine head groups in M.

View Article and Find Full Text PDF

Liposome vesicles could be formed at 65 degrees C from the chloroform-soluble, total polar lipids (TPL) extracted from Mycobacterium bovis bacillus Calmette-Guérin (BCG). Mice immunized with ovalbumin (OVA) entrapped in TPL liposomes produced both anti-OVA antibody and cytotoxic T lymphocyte responses. Murine bone marrow-derived dendritic cells were activated to secrete interleukin-6 (IL-6), IL-12, and tumor necrosis factor upon exposure to antigen-free TPL liposomes.

View Article and Find Full Text PDF

Archaeal isopranoid glycerolipid vesicles (archaeosomes) serve as strong adjuvants for cell-mediated responses to entrapped Ag. We analyzed the processing pathway of OVA entrapped in archaeosomes composed of Methanobrevibacter smithii lipids, high in archaetidylserine (OVA-archaeosomes). In vitro, OVA-archaeosomes stimulated spleen cells from OVA-TCR-transgenic mice, D011.

View Article and Find Full Text PDF

Immune stimulating activity was compared for lipid vesicles consisting of the total polar lipids of an archaeon Haloferax volcanii, and the eubacteria Planococcus spp. and Bacillus firmus. Each total polar lipid extract readily formed liposomes of similar size, within which the protein antigen ovalbumin was entrapped, with comparable loading and internalization.

View Article and Find Full Text PDF

As part of a study to identify novel lipids with immune adjuvant activity, a structural comparison was made between the polar lipids from two halophiles, an archaeon Haloferax volcanii and a eubacterium Planococcus H8. H. volcanii polar lipid extracts consisted of 44% archaetidylglycerol methylphosphate, 35% archaetidylglycerol, 4.

View Article and Find Full Text PDF

Archaeosome adjuvants formulated as archaeal ether glycerolipid vesicles induce strong CD4(+) as well as CD8(+) CTL responses to entrapped soluble antigens. Immunization of mice with ovalbumin (OVA) entrapped in archaeosomes composed of the total polar lipids of Methanobrevibacter smithii resulted in a potent OVA-specific CD8(+) T-cell response, and subsequently, the mice dramatically resisted solid tumor growth of OVA-expressing EG.7 cells and lung metastasis of B16OVA melanoma cells.

View Article and Find Full Text PDF

Archaeosomes, liposomes prepared from the polar ether lipids extracted from Archaea, demonstrate great potential as immunomodulating carriers of soluble antigens, promoting humoral and cell mediated immunity in the vaccinated host. The safety of unilamellar archaeosomes prepared from the total polar lipids (TPL) of Halobacterium salinarum, Methanobrevibacter smithii or Thermoplasma acidophilum was evaluated in female BALB/c mice using ovalbumin (OVA) as the model antigen. Groups of 6-8 mice were injected (0.

View Article and Find Full Text PDF

Archaebacteria thrive in environments characterized by anaeobiosis, saturated salt, and both high and low extremes of temperature and pH. The bulk of their membrane lipids are polar, characterized by the archaeal structural features typified by ether linkage of the glycerol backbone to isoprenoid chains of constant length, often fully saturated, and with sn-2,3 stereochemistry opposite that of glycerolipids of Bacteria and Eukarya. Also unique to these bacteria are macrocyclic archaeol and membrane spanning caldarchaeol lipids that are found in some extreme thermophiles and methanogens.

View Article and Find Full Text PDF

Protective immunity to intracellular bacterial pathogens usually requires the participation of specific CD8+ T cells. Natural exposure of the host to sublethal infection, or vaccination with attenuated live vaccines are the most effective means of eliciting prolonged protective cell-mediated immunity against this class of pathogens. The ability to replace these immunization strategies with defined sub-unit vaccines would represent a major advance for clinical vaccinology.

View Article and Find Full Text PDF

The unique glycerolipids of Archaea can be formulated into vesicles (archaeosomes) with potent adjuvant activity. We studied the effect of archaeosomes on APCs to elucidate the mechanism(s) of adjuvant action. Exposure of J774A.

View Article and Find Full Text PDF

The unique ether glycerolipids of Archaea can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264).

View Article and Find Full Text PDF

Liposomes are artificial, spherical, closed vesicles consisting of one or more lipid bilayer(s). Liposomes made from ester phospholipids have been studied extensively over the last 3 decades as artificial membrane models. Considerable interest has been generated for applications of liposomes in medicine, including their use as diagnostic reagents, as carrier vehicles in vaccine formulations, or as delivery systems for drugs, genes, or cancer imaging agents.

View Article and Find Full Text PDF