Publications by authors named "Spronsen M"

Selective catalytic oxidation (SCO) of NH to N is one of the most effective methods used to eliminate NH emissions. However, achieving high conversion over a wide operating temperature range while avoiding over-oxidation to NO remains a significant challenge. Here, we report a bi-metallic surficial catalyst (PtCuO/AlO) with improved Pt atom efficiency that overcomes the limitations of current catalysts.

View Article and Find Full Text PDF

Single-atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering-induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of FeO support.

View Article and Find Full Text PDF

The reactivity of LiLaZrTaO (LLZTO) solid electrolytes to form lithio-phobic species such as LiCO on their surface when exposed to trace amounts of HO and CO limits the progress of LLZTO-based solid-state batteries. Various treatments, such as annealing LLZTO within a glovebox or acid etching, aim at removing the surface contaminants, but a comprehensive understanding of the evolving LLZTO surface chemistry during and after these treatments is lacking. Here, glovebox-like HO and CO conditions were recreated in a near ambient pressure X-ray photoelectron spectroscopy chamber to analyze the LLZTO surface under realistic conditions.

View Article and Find Full Text PDF

The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45-2200 eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions.

View Article and Find Full Text PDF

Myelodysplastic neoplasms (MDS) encompass haematological malignancies, which are characterised by dysplasia, ineffective haematopoiesis and the risk of progression towards acute myeloid leukaemia (AML). Myelodysplastic neoplasms are notorious for their heterogeneity: clinical outcomes range from a near-normal life expectancy to leukaemic transformation or premature death due to cytopenia. The Molecular International Prognostic Scoring System made progress in the dissection of MDS by clinical outcomes.

View Article and Find Full Text PDF

A fundamental understanding of the electrochemical reactions and surface chemistry at the solid-gas interface and is critical for electrode materials applied in electrochemical and catalytic applications. Here, the surface reactions and surface composition of a model of mixed ionic and electronic conducting (MIEC) perovskite oxide, (LaSr)CrFeO (LSCrF8255), were investigated using synchrotron-based near-ambient pressure (AP) X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). The measurements were conducted with a surface temperature of 500 °C under 1 mbar of dry oxygen and water vapor, to reflect the implementation of the materials for oxygen reduction/evolution and HO electrolysis in the applications such as solid oxide fuel cell (SOFC) and electrolyzers.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how different mixtures of hydrogen (H) and carbon monoxide (CO) interact with copper (Cu) surfaces at 200 °C, crucial for methanol production.
  • It reveals that introducing H before CO keeps the Cu in a metallic state, while adding CO first leads to oxidation of Cu to CuO.
  • The research emphasizes the significance of maintaining metallic Cu for effective catalysis, showing that CO helps to eliminate oxidized surface layers and facilitates methanol production.
View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) comprise hematological disorders that originate from the neoplastic transformation of hematopoietic stem cells (HSCs). However, discrimination between HSCs and their neoplastic counterparts in MDS-derived bone marrows (MDS-BMs) remains challenging. We hypothesized that in MDS patients immature CD34CD38 cells with aberrant expression of immunophenotypic markers reflect neoplastic stem cells and that their frequency predicts leukemic progression.

View Article and Find Full Text PDF

Tin-containing layers with different degrees of oxidation are uniformly distributed along the length of silicon nanowires formed by a top-down method by applying metalorganic chemical vapor deposition. The electronic and atomic structure of the obtained layers is investigated by applying nondestructive surface-sensitive X-ray absorption near edge spectroscopy using synchrotron radiation. The results demonstrated, for the first time, a distribution effect of the tin-containing phases in the nanostructured silicon matrix compared to the results obtained for planar structures at the same deposition temperatures.

View Article and Find Full Text PDF

Background: Myelodysplastic syndromes (MDS) at risk of transformation to acute myeloid leukemia (AML) are difficult to identify. The bone marrows of MDS patients harbor specific hematopoietic stem and progenitor cell (HSPC) abnormalities that may be associated with sub-types and risk-groups. Leukemia-associated characteristics of such cells may identify MDS patients at risk of progression to AML and provide insight in the pathobiology of MDS.

View Article and Find Full Text PDF

To understand corrosion, energy storage, (electro)catalysis, etc., obtaining chemical information on the solid-liquid interface is crucial but remains extremely challenging. Here, X-ray absorption spectroscopy (XAS) is used to study the solid-liquid interface between TiO and HO.

View Article and Find Full Text PDF

The diagnostic work-up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected-MDS. The computational diagnostic workflow consists of methods for pre-processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest).

View Article and Find Full Text PDF

The migration of species across interfaces can crucially affect the performance of heterogeneous catalysts. A key concept in using bimetallic catalysts for hydrogenation is that the active metal supplies hydrogen atoms to the host metal, where selective hydrogenation can then occur. Herein, we demonstrate that, following dihydrogen dissociation on palladium islands, hydrogen atoms migrate from palladium to silver, to which they are generally less strongly bound.

View Article and Find Full Text PDF

The restructuring of interfaces plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different compositions and morphologies at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of long-time scale restructuring of Pd deposited on Ag using microscopy, spectroscopy, and novel simulation methods.

View Article and Find Full Text PDF

Free-standing ultrathin (∼2 nm) films of several oxides (AlO,TiO, and others) have been developed, which are mechanically robust and transparent to electrons with ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions.

View Article and Find Full Text PDF

Heterogeneous catalysts are complex materials with multiple interfaces. A critical proposition in exploiting bifunctionality in alloy catalysts is to achieve surface migration across interfaces separating functionally dissimilar regions. Herein, we demonstrate the enhancement of more than 10 in the rate of molecular hydrogen reduction of a silver surface oxide in the presence of palladium oxide compared to pure silver oxide resulting from the transfer of atomic hydrogen from palladium oxide islands onto the surrounding surface formed from oxidation of a palladium-silver alloy.

View Article and Find Full Text PDF

Pt-based alloy catalysts are promising candidates for fuel-cell applications, especially for cathodic oxygen reduction reaction (ORR) and anodic methanol oxidation reaction (MOR). The rational design of composition and morphology is crucial to promoting catalytic performances. Here, we report the synthesis of Pt-Co nanoframes via chemical etching of Co from solid rhombic dodecahedra.

View Article and Find Full Text PDF

The activation of O on metal surfaces is a critical process for heterogeneous catalysis and materials oxidation. Fundamental studies of well-defined metal surfaces using a variety of techniques have given crucial insight into the mechanisms, energetics, and dynamics of O adsorption and dissociation. Here, trends in the activation of O on transition metal surfaces are discussed, and various O adsorption states are described in terms of both electronic structure and geometry.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how oxygen affects the activation of C-H bonds in methane on copper surfaces, specifically Cu(111) and CuO(111), using advanced imaging and spectroscopy techniques.
  • Only the oxygen-precovered Cu(111) surface demonstrated the ability to activate methane at 300 K and under moderate pressures.
  • Density functional theory calculations indicate that the most efficient activation mechanism involves a two-active-site setup that stabilizes the transition state through interactions between oxygen-hydrogen and copper-methyl groups.
View Article and Find Full Text PDF

Despite its importance in oxidation catalysis, the active phase of Pt remains uncertain, even for the Pt(111) single-crystal surface. Here, using a ReactorSTM, the catalytically relevant structures are identified as two surface oxides, different from bulk α-PtO, previously observed. They are constructed from expanded oxide rows with a lattice constant close to that of α-PtO, either assembling into spoked wheels, 1-5 bar O, or closely packed in parallel lines, above 2.

View Article and Find Full Text PDF

A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core.

View Article and Find Full Text PDF

Platinum and palladium are frequently used as catalytic materials, for example for the oxidation of CO. This is one of the most widely studied reactions in the field of surface science. Although seemingly uncomplicated, it remains an active and interesting topic, which is partially explained by the push to conduct experiments on model systems under relevant reaction conditions.

View Article and Find Full Text PDF