Publications by authors named "Springael D"

Microplastic pollution in aquatic environments is a growing global concern. Microplastics, defined as plastic fragments smaller than five millimetres, accumulate in freshwater reservoirs, especially in urban areas, impacting resident biota. This study examined the effects of microplastics on the performance and microbiome of Daphnia, a keystone organism in freshwater ecosystems, through both in situ sampling of freshwater ponds and a controlled 23-day in vitro exposure experiment.

View Article and Find Full Text PDF

This study aimed for a better understanding of the niche specification of bacteria carrying the -genes for aerobic 2,4-dichlorphenoxyacetic acid (2,4-D) degradation in the rice paddy ecosystem. To achieve this, a dedicated microcosm experiment was set up to mimic the rice paddy system, with and without 2,4-D addition, allowing spatial sampling of the different rice paddy compartments and niches, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how cooperative interactions between invading microorganisms and resident bacteria influence the common negative relationship between biodiversity and microbial invasion.
  • The researchers focused on Aminobacter niigataensis MSH1 and its ability to break down a groundwater pollutant, examining its performance alongside synthetic bacterial communities with various interactions.
  • While the overall negative diversity-invasion pattern was present, resident bacteria that cooperated with the invader improved MSH1's survival and effectiveness, suggesting that community composition plays a crucial role in invasion success despite varying richness.
View Article and Find Full Text PDF

2,6-Dichlorobenzamide (BAM) is an omnipresent micropollutant in European groundwaters. MSH1 is a prime candidate for biologically treating BAM-contaminated groundwater since this organism is capable of utilizing BAM as a carbon and energy source. However, detailed information on the BAM degradation kinetics by MSH1 at trace concentrations is lacking, while this knowledge is required for predicting and optimizing the degradation process.

View Article and Find Full Text PDF

Strain MDTJ8 is a chain-elongating thermophilic bacterium isolated from a thermophilic acidogenic anaerobic digestor treating human waste while producing the high commodity chemical -caproate. The strain grows and produces formate, acetate, -butyrate, -caproate and lactate from mono-, di- and polymeric saccharides at 37-60 °C (optimum, 50-55 °C) and at pH 5.0-7.

View Article and Find Full Text PDF

A thermophilic chain elongating bacterium, strain MDTJ8, was isolated from a thermophilic acidogenic anaerobic digestor producing n-caproate from human waste, growing optimally at 50-55 °C and pH 6.5. 16S rRNA gene analysis suggests that MDTJ8 represents a new species/genus within a group currently composed of mesophilic chain elongators of the Oscillospiraceae family.

View Article and Find Full Text PDF

Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context.

View Article and Find Full Text PDF

Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA.

View Article and Find Full Text PDF

Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells.

View Article and Find Full Text PDF

The frequent exposure of agricultural soils to pesticides can lead to microbial adaptation, including the development of dedicated microbial populations that utilize the pesticide compound as a carbon and energy source. Soil from an agricultural field in Halen (Belgium) with a history of linuron exposure has been studied for its linuron-degrading bacterial populations at two time points over the past decade and Variovorax was appointed as a key linuron degrader. Like most studies on pesticide degradation, these studies relied on isolates that were retrieved through bias-prone enrichment procedures and therefore might not represent the in situ active pesticide-degrading populations.

View Article and Find Full Text PDF

The formation of estrogenic intermediates, i.e. nonylphenol diethoxylate (NP2EO), nonylphenol monoethoxylate (NP1EO), and nonylphenol (NP), following nonylphenol ethoxylates (NPEOs) biodegradation in textile wastewater raises concerns about its endocrine disruptive activity, but the estrogenicity changes of textile wastewater throughout biological treatment processes remain unknown.

View Article and Find Full Text PDF

Proteins, an important fraction of the organic matter in wastewater, typically enter a treatment facility as high molecular weight components. These components are degraded by extracellular protein hydrolytic enzymes, denoted as proteases. Adequate protein hydrolysis monitoring is crucial, since protein hydrolysis is often a rate-limiting step in wastewater treatment.

View Article and Find Full Text PDF

Our understanding of the microorganisms involved in biodegradation of xenobiotics, like pesticides, in natural and engineered environments is poor. On-farm biopurification systems (BPSs) treat farm-produced pesticide-contaminated wastewater to reduce surface water pollution. BPSs are a labor and cost-efficient technology but are still mainly operated as black box systems.

View Article and Find Full Text PDF

Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism.

View Article and Find Full Text PDF

PromA plasmids are broad host range (BHR) plasmids, which are often cryptic and hence have an uncertain ecological role. We present three novel PromA γ plasmids which carry genes associated with degradation of the phenylurea herbicide linuron, two of which originated from unrelated hosts isolated from different environments (pPBL-H3-2 and pBPS33-2), and one (pEN1) which was exogenously captured from an on-farm biopurification system (BPS). sp.

View Article and Find Full Text PDF

Anaerobic digestion (AD) is a biological process that is acquiring increasing attention for both solid waste and wastewater treatment, as well as for the production of valuable chemicals. Despite the importance of the inoculum, the relationship between inoculum community composition, reactor performance, and reactor community composition remains vague. To understand the impact of the starting community on the composition and functioning of the AD microbiome, we studied three sets of biologically replicated AD reactors inoculated with different communities, but operated identically, targeting both total and active community compositions.

View Article and Find Full Text PDF
Article Synopsis
  • 2,6-Dichlorobenzamide (BAM) is a significant groundwater pollutant that complicates drinking water treatment, but sp. MSH1 can use BAM for growth and bioremediation.
  • The biocatalytic pathway for BAM degradation involves multiple enzymes, primarily BbdA, BbdD, BbdI, BbdE, and BbdC, which work in sequence to break down BAM into less harmful substances.
  • Notably, BbdC is an innovative enzyme in the α/β hydrolase superfamily, uniquely involved in dehalogenating chlorinated aromatics and leading to the formation of new trihydroxylated byproducts for further metabolism.
View Article and Find Full Text PDF

Sand filters (SFs) are commonly applied in drinking water treatment plants (DWTPs) for removal of iron and manganese but also show potential for microbial degradation of pesticide residues. The latter is advantageous in case the intake water contains pesticide residues. However, whether this involves mineralization suggesting no generation of harmful transformation products, its consistency over time, and how this ability relates to physicochemical and biological characteristics of the DWTP intake water and the SFs is unknown.

View Article and Find Full Text PDF

The tfd genes mediating degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) differ in composition and organization in bacterial isolates from different geographical origin and are carried by different types of mobile genetic elements (MGE). It is not known whether such global diversity of 2,4-D-catabolic MGE and their tfd gene cargo is reflected in the diversity at field scale. The genomic context of the 2,4-D catabolic genes of 2,4-D-degrading isolates from two rice fields with a 2,4-D application history, located in two distant provinces of the Vietnam Mekong delta, was compared.

View Article and Find Full Text PDF

IS1071, an insertion element that primarily flanks organic xenobiotic degradation genes in cultured isolates, is suggested to play a key role in the formation and distribution of bacterial catabolic pathway gene clusters. However, in environmental settings, the identity of the IS1071 genetic cargo and its correspondence to the local selective conditions remain unknown. To respond, we developed a long-range PCR approach amplifying accessory genes between two IS1071 copies from community DNA followed by amplicon sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Aminobacter sp. MSH1 can use the micropollutant 2,6-dichlorobenzamide (BAM) as its only carbon and energy source, converting it into 2,6-dichlorobenzoic acid (2,6-DCBA) with the help of an enzyme called BbdA.
  • The genes responsible for degrading 2,6-DCBA are located on a second plasmid named pBAM2, which is 53.9 kb in size and contains specialized gene clusters for various metabolic functions.
  • The research identifies that the bbdD gene produces an enzyme that transforms 2,6-DCBA into an intermediate, 3-hydroxy-2,6
View Article and Find Full Text PDF

The influence of membrane surface charge on biofouling community composition during activated sludge filtration in a membrane bioreactor was investigated in this study using polyacrylonitrile-based membranes. Membranes with different surface properties were synthesized by phase inversion followed by a layer-by-layer modification. Various characterization results showed that the membranes differed only in their surface chemical composition and charge, ie two of them were negative, one neutral and one positive.

View Article and Find Full Text PDF

The proteobacteria Variovorax sp. WDL1, Comamonas testosteroni WDL7, and Hyphomicrobium sulfonivorans WDL6 compose a triple-species consortium that synergistically degrades and grows on the phenylurea herbicide linuron. To acquire a better insight into the interactions between the consortium members and the underlying molecular mechanisms, we compared the transcriptomes of the key biodegrading strains WDL7 and WDL1 grown as biofilms in either isolation or consortium conditions by differential RNAseq analysis.

View Article and Find Full Text PDF

Over the last decades, anaerobic bioreactor technology proved to be a competitive technology for purifying wastewater while producing biogas. Methanogens perform the crucial final step in methane production, and monitoring their activity is of paramount importance for system understanding and management. Cofactor F is an essential prosthetic group of the methyl-coenzyme M reductase (MCR) enzyme catalysing this final step.

View Article and Find Full Text PDF

Variovorax sp. WDL1 mediates hydrolysis of the herbicide linuron into 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine in a tripartite bacterial consortium with Comamonas testosteroni WDL7 and Hyphomicrobium sulfonivorans WDL6. Although strain WDL1 contains the dcaQTA1A2B operon for DCA oxidation, this conversion is mainly performed by WDL7.

View Article and Find Full Text PDF