Publications by authors named "Spracklen D"

Indonesia accounts for more than one third of the world's tropical peatlands. Much of the peatland in Indonesia has been deforested and drained, meaning it is more susceptible to fires, especially during drought and El Niño events. Fires are most common in Riau (Sumatra) and Central Kalimantan (Borneo) and lead to poor regional air quality.

View Article and Find Full Text PDF

The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017.

View Article and Find Full Text PDF

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.

View Article and Find Full Text PDF

Tropical deforestation impacts the climate through complex land-atmosphere interactions causing local and regional warming. However, whilst the impacts of deforestation on local temperature are well understood, the regional (nonlocal) response is poorly quantified. Here, we used remote-sensed observations of forest loss and dry season land-surface temperature during the period 2001 to 2020 to demonstrate that deforestation of the Amazon caused strong warming at distances up to 100 km away from the forest loss.

View Article and Find Full Text PDF

Deforestation of the Amazon may reach a critical point where abrupt declines in rainfall could cause widespread forest dieback.

View Article and Find Full Text PDF

Mountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on "closed-loop" mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land-use change.

View Article and Find Full Text PDF

Climate, deforestation, and forest fires are closely coupled in the Amazon, but models of fire that include these interactions are lacking. We trained machine learning models on temperature, rainfall, deforestation, land-use, and fire data to show that spatial and temporal patterns of fire in the Amazon are strongly modified by deforestation. We find that fire count across the Brazilian Amazon increases by 0.

View Article and Find Full Text PDF

Tropical forests play a critical role in the hydrological cycle and can influence local and regional precipitation. Previous work has assessed the impacts of tropical deforestation on precipitation, but these efforts have been largely limited to case studies. A wider analysis of interactions between deforestation and precipitation-and especially how any such interactions might vary across spatial scales-is lacking.

View Article and Find Full Text PDF

Many natural forests in Southeast Asia are degraded following decades of logging. Restoration of these forests is delayed by ongoing logging and tropical cyclones, but the implications for recovery are largely uncertain. We analysed meteorological, satellite and forest inventory plot data to assess the effect of Typhoon Doksuri, a major tropical cyclone, on the forest landscapes of central Vietnam consisting of natural forests and plantations.

View Article and Find Full Text PDF

Moisture evaporated from the land contributing to precipitation in a given area is known as precipitation recycling and needs to be accurately represented in climate models. The Amazon and Congo basins are reported to have the highest precipitation recycling rates globally, but model representation has not yet been assessed over these regions. We evaluated recycling over the Amazon and Congo in 45 Coupled Model Intercomparison Project Phase 6 models.

View Article and Find Full Text PDF

Anthropogenic emissions and ambient fine particulate matter (PM) concentrations have declined in recent years across China. However, PM exposure remains high, ozone (O) exposure is increasing, and the public health impacts are substantial. We used emulators to explore how emission changes (averaged per sector over all species) have contributed to changes in air quality and public health in China over 2010-2020.

View Article and Find Full Text PDF

Machine learning models can emulate chemical transport models, reducing computational costs and enabling more experimentation. We developed emulators to predict annual-mean fine particulate matter (PM) and ozone (O) concentrations and their associated chronic health impacts from changes in five major emission sectors (residential, industrial, land transport, agriculture, and power generation) in China. The emulators predicted 99.

View Article and Find Full Text PDF

Forests play a pivotal role in regulating climate and sustaining the hydrological cycle. The biophysical impacts of forests on clouds, however, remain unclear. Here, we use satellite data to show that forests in different regions have opposite effects on summer cloud cover.

View Article and Find Full Text PDF

Deforestation and drainage has made Indonesian peatlands susceptible to burning. Large fires occur regularly, destroying agricultural crops and forest, emitting large amounts of CO and air pollutants, resulting in adverse health effects. In order to reduce fire, the Indonesian government has committed to restore 2.

View Article and Find Full Text PDF

The Australian 2019/2020 bushfires were unprecedented in their extent and intensity, causing a catastrophic loss of habitat, human and animal life across eastern-Australia. We use a regional air quality model to assess the impact of the bushfires on particulate matter with a diameter less than 2.5 μm (PM) concentrations and the associated health impact from short-term population exposure to bushfire PM.

View Article and Find Full Text PDF
Article Synopsis
  • Forest and vegetation fires in Asia are significant sources of air pollution, harming air quality and public health.
  • Eliminating these fires could lead to a 7% reduction in fine particulate matter and a 5% reduction in surface ozone, resulting in an estimated 59,000 fewer premature deaths annually.
  • The study highlights that poorer populations are most affected by fire-related PM exposure, particularly in northern Laos and western Myanmar, underscoring the need to prioritize fire reduction for public health improvements.
View Article and Find Full Text PDF

Air pollution from Amazon fires has adverse impacts on human health. The number of fires in the Amazon has increased in recent years, but whether this increase was driven by deforestation or climate has not been assessed. We analyzed relationships between fire, deforestation, and climate for the period 2003 to 2019 among selected states across the Brazilian Legal Amazon (BLA).

View Article and Find Full Text PDF

Air pollution exposure remains a leading public health problem in China. The use of chemical transport models to quantify the impacts of various emission changes on air quality is limited by their large computational demands. Machine learning models can emulate chemical transport models to provide computationally efficient predictions of outputs based on statistical associations with inputs.

View Article and Find Full Text PDF

Air pollution exposure is a leading public health problem in China. The majority of the total air pollution disease burden is from fine particulate matter (PM) exposure, with smaller contributions from ozone (O) exposure. Recent emission reductions have reduced PM exposure.

View Article and Find Full Text PDF

Deforestation rates have declined substantially across the Brazilian Legal Amazon (BLA) over the period from 2000-2017. However, reductions in fire, aerosol and carbon dioxide have been far less significant than deforestation, even when accounting for inter-annual variability in precipitation. Our observations and analysis support a decoupling between fire and deforestation that has exacerbated forest degradation in the BLA.

View Article and Find Full Text PDF

The terrestrial carbon sink has increased since the turn of this century at a time of increased fossil fuel burning, yet the mechanisms enhancing this sink are not fully understood. Here we assess the hypothesis that regional increases in nitrogen deposition since the early 2000s has alleviated nitrogen limitation and worked in tandem with enhanced CO fertilization to increase ecosystem productivity and carbon sequestration, providing a causal link between the parallel increases in emissions and the global land carbon sink. We use the Community Land Model (CLM4.

View Article and Find Full Text PDF

Long-term ambient ozone (O) exposure is a risk factor for human health. We estimate the source-specific disease burden associated with long-term O exposure in India at high spatial resolution using updated risk functions from the American Cancer Society Cancer Prevention Study II. We estimate 374,000 (95UI: 140,000-554,000) annual premature mortalities using the updated risk function in India in 2015, 200% larger than estimates using the earlier American Cancer Society Cancer Prevention Study II risk function.

View Article and Find Full Text PDF

Uncertainty in pre-industrial natural aerosol emissions is a major component of the overall uncertainty in the radiative forcing of climate. Improved characterisation of natural emissions and their radiative effects can therefore increase the accuracy of global climate model projections. Here we show that revised assumptions about pre-industrial fire activity result in significantly increased aerosol concentrations in the pre-industrial atmosphere.

View Article and Find Full Text PDF

Designs of "improved" stoves are introduced recently to benefit the solid fuel consumption of cooking activities in developing countries, but the uncertainties concerning the combustion processes and particulate emissions remain poorly characterized. To help understand this, combustion in three examples of "improved" African cookstoves was investigated in the laboratory. A typical European heating stove was included for comparison purpose.

View Article and Find Full Text PDF