Publications by authors named "Sponarova J"

Sustained expression of FOXM1 is a hallmark of nearly all human cancers including squamous cell carcinomas of the head and neck (HNSCC). HNSCCs partially preserve the epithelial differentiation program, which recapitulates fetal and adult traits of the tissue of tumor origin but is deregulated by genetic alterations and tumor-supporting pathways. Using shRNA-mediated knockdown, we demonstrate a minimal impact of FOXM1 on proliferation and migration of HNSCC cell lines under standard cell culture conditions.

View Article and Find Full Text PDF

HPV-positive head and neck squamous cell carcinoma (HNSCC) is increasingly frequent. Management is particularly debated in the case of postsurgical high-risk features, that is, positive surgical margins and extracapsular spread (ECS). In this increasingly complex emerging framework of HNSCC treatment, representative preclinical models are needed to support future clinical trials and advances in personalized medicine.

View Article and Find Full Text PDF

Amyloid A amyloidosis is a protein misfolding disease characterized by deposition of extracellular aggregates derived from the acute-phase reactant serum amyloid A protein. If untreated, amyloid A amyloidosis leads to irreversible damage of various organs, including the kidneys, liver, and heart. Amyloid A deposits regress upon reduction of serum amyloid A concentration, indicating that the amyloid can be efficiently cleared by natural mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Prions invade the central nervous system after initially colonizing lymphoid organs, primarily using follicular dendritic cells (FDCs) for this process.
  • Researchers found that prion accumulation in lymph nodes can occur even without TNFR1, relying instead on LTβR signaling.
  • They discovered that high endothelial venules (HEVs) facilitate prion entry into lymph nodes and can support their accumulation or replication despite the absence of mature FDCs.
View Article and Find Full Text PDF

Spongiform encephalopathies have been reported to be transmitted by blood transfusion even prior to the clinical onset. Experimental AA-amyloidosis shows similarities with prion disease and amyloid-containing organ-extracts can prime a recipient for the disease. In this systemic form of amyloidosis N-terminal fragments of the acute-phase reactant apolipoprotein serum amyloid A are the main amyloid protein.

View Article and Find Full Text PDF

Mitochondrial uncoupling protein 2 (UCP2) is abundant in developing monocyte/macrophage cells and may affect hematopoiesis by reducing formation of reactive oxygen species. The aims of this study were to further characterize the involvement of UCP2 in hematopoiesis. In situ hybridization in mouse embryos identified UCP2-positive cells in liver and inside primitive blood vessels from 10.

View Article and Find Full Text PDF

The mechanisms controlling fat depot-specific metabolism are poorly understood. During starvation of mice, downregulation of lipogenic genes, suppression of fatty acid synthesis, and increases in lipid oxidation were all more pronounced in epididymal than in subcutaneous fat. In epididymal fat, relatively strong upregulation of uncoupling protein 2 and phosphoenolpyruvate carboxykinase genes was found.

View Article and Find Full Text PDF

Aims/hypothesis: Intake of n-3 polyunsaturated fatty acids reduces adipose tissue mass, preferentially in the abdomen. The more pronounced effect of marine-derived eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on adiposity, compared with their precursor alpha-linolenic acid, may be mediated by changes in gene expression and metabolism in white fat.

Methods: The effects of EPA/DHA concentrate (6% EPA, 51% DHA) admixed to form two types of high-fat diet were studied in C57BL/6J mice.

View Article and Find Full Text PDF

Omega-3 PUFA of marine origin reduce adiposity in animals fed a high-fat diet. Our aim was to learn whether EPA and DHA could limit development of obesity and reduce cellularity of adipose tissue and whether other dietary FA could influence the effect of EPA/DHA. Weight gain induced by composite high-fat diet in C57BL/6J mice was limited when the content of EPA/DHA was increased from 1 to 12% (wt/wt) of dietary lipids.

View Article and Find Full Text PDF

As indicated by in vitro studies, both lipogenesis and lipolysis in adipocytes depend on the cellular ATP levels. Ectopic expression of mitochondrial uncoupling protein 1 (UCP1) in the white adipose tissue of the aP2-Ucp1 transgenic mice reduced obesity induced by genetic or dietary manipulations. Furthermore, respiratory uncoupling lowered the cellular energy charge in adipocytes, while the synthesis of fatty acids (FA) was inhibited and their oxidation increased.

View Article and Find Full Text PDF

The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that promotes catabolic and inhibits anabolic pathways. However, the role of AMPK in adipocytes is poorly understood. We show that transgenic expression of mitochondrial uncoupling protein 1 in white fat, which induces obesity resistance in mice, is associated with depression of cellular energy charge, activation of AMPK, downregulation of adipogenic genes, and increase in lipid oxidation.

View Article and Find Full Text PDF

Body fat content is controlled, at least in part, by energy charge of adipocytes. In vitro studies indicated that lipogenesis as well as lipolysis depend on cellular ATP levels. Respiratory uncoupling may, through the depression of ATP synthesis, control lipid metabolism of adipose cells.

View Article and Find Full Text PDF

Protease inhibitors (PIs) are an important class of drugs for the treatment of HIV infection. However, in the course of treatment, resistant viral variants with reduced sensitivity to PIs often emerge and become a major obstacle to successful control of viral load. On the basis of a compound equipotently inhibiting HIV-1 and 2 proteases (PR), we have designed a pseudopeptide inhibitor, QF34, that efficiently inhibits a wide variety of PR variants.

View Article and Find Full Text PDF

It is becoming evident that insulin resistance of white adipose tissue is a major factor underlying the cardiovascular risk of obesity. Impaired fat storage rather than altered glucose metabolism in adipocytes probably contributes to development of insulin resistance in muscle and other tissues, in particular via increased delivery of nonesterified fatty acids into circulation. Lipid metabolism of adipose tissue is affected by the energy status of fat cells.

View Article and Find Full Text PDF

In vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocytes of aP2-Ucp1 transgenic mice, overexpressing the UCP1 gene from the aP2 gene promoter, reflecting the magnitude of UCP1 expression, the impaired stimulation of cAMP levels by noradrenaline and the reduction of the ATP/ADP ratio in different fat depots.

View Article and Find Full Text PDF